delete docs
This commit is contained in:
@@ -1,422 +0,0 @@
|
||||
# README
|
||||
Play around with the code in /notebooks
|
||||
|
||||
## Customer Creation
|
||||
Before creating a user, a customer generates random properties and set
|
||||
values. The customers manage users. They define an nKode policy, keypad's dimensions,
|
||||
properties/sets in the keypad, and the frequency of property renewal.
|
||||
### nKode Policy and Keypad Size
|
||||
An nKode policy defines:
|
||||
<ul>
|
||||
<li>the maximum length of a user's nKode</li>
|
||||
<li>the minimum length of a user's nKode</li>
|
||||
<li>the number of unique set values in a user's nKode</li>
|
||||
<li>the number of unique values in a user's nKode</li>
|
||||
<li>the number of bytes in an property and set</li>
|
||||
</ul>
|
||||
|
||||
The keypad size defines:
|
||||
<ul>
|
||||
<li>the number of keys in the keypad displayed to the user</li>
|
||||
<li>properties per key</li>
|
||||
</ul>
|
||||
|
||||
To be [dispersion](nkode_concepts.md/#dispersion-resistant-interface) resistant, the number of properties must be greater than the number of keys.
|
||||
|
||||
```
|
||||
api = NKodeAPI()
|
||||
|
||||
policy = NKodePolicy(
|
||||
max_nkode_len=10,
|
||||
min_nkode_len=4,
|
||||
distinct_sets=0,
|
||||
distinct_properties=4,
|
||||
byte_len=2
|
||||
)
|
||||
|
||||
keypad_size = KeypadSize(
|
||||
numb_of_keys = {{ keypad_size.numb_of_keys }},
|
||||
props_per_key = {{ keypad_size.props_per_key }} # aka number of sets
|
||||
)
|
||||
|
||||
customer_id = api.create_new_customer(keypad_size, policy)
|
||||
customer = api.customers[customer_id]
|
||||
```
|
||||
### Customer properties and Sets
|
||||
A customer has users and defines the properties and set values for all its users.
|
||||
Since our customer has {{ keypad_size.numb_of_keys }} keys and {{ keypad_size.props_per_key }} properties per key,
|
||||
this gives a customer interface of {{ keypad_size.numb_of_props }} distinct properties and {{ keypad_size.props_per_key }} distinct property sets.
|
||||
Each property belongs to one of the {{ keypad_size.props_per_key }} sets. Each property and set value is a unique 2-byte integer in this example.
|
||||
|
||||
```
|
||||
set_vals = customer.cipher.set_key
|
||||
|
||||
Customer Sets: {{ customer_set_vals }}
|
||||
```
|
||||
|
||||
```
|
||||
prop_vals = customer.cipher.prop_key
|
||||
keypad_view(prop_vals, keypad_size.props_per_key)
|
||||
|
||||
Customer properties:
|
||||
{% for props in customer_prop_view -%}
|
||||
{{ props }}
|
||||
{% endfor %}
|
||||
```
|
||||
|
||||
properties organized by set:
|
||||
```
|
||||
prop_set_view = matrix_transpose(prop_keypad_view)
|
||||
set_property_dict = dict(zip(set_vals, prop_set_view))
|
||||
|
||||
Set to property Map:
|
||||
{% for set_val, props in set_property_dict.items() -%}
|
||||
{{ set_val }} : {{ props }}
|
||||
{% endfor %}
|
||||
```
|
||||
|
||||
## User Signup
|
||||
Now that we have a customer, we can create users. To create a new user:
|
||||
|
||||
1. Generate a random interface
|
||||
2. The user sets their nKode and sends their selection to the server
|
||||
3. The user confirms their nKode. If the user's nKode matches the policy, the server creates the user.
|
||||
### Random Interface Generation
|
||||
The user's interface must be dispersable so the server can determine the user's nkode.
|
||||
The server randomly drops property sets until
|
||||
the number of properties equals the number of keys, making the interface dispersable.
|
||||
In our case, the server randomly drops {{ keypad_size.props_per_key - keypad_size.numb_of_keys }} property {{ "sets" if keypad_size.props_per_key - keypad_size.numb_of_keys > 1 else "set" }}.
|
||||
to give us a {{ keypad_size.numb_of_keys }} X {{ keypad_size.numb_of_keys }} keypad with possible index values ranging from 0-{{ keypad_size.numb_of_props - 1 }}.
|
||||
Each value in the interface is the index value of a customer property.
|
||||
The user never learns what their "real" property is. They do not see the index value representing their nKode or
|
||||
the customer server-side value.
|
||||
|
||||
```
|
||||
session_id, signup_interface = api.generate_index_interface(customer_id)
|
||||
signup_interface_keypad = list_to_matrix(signup_interface, keypad_size.props_per_key)
|
||||
|
||||
Signup Keypad:
|
||||
{% for key in signup_keypad -%}
|
||||
Key {{ loop.index }}: {{ key }}
|
||||
{% endfor %}
|
||||
```
|
||||
|
||||
### Set nKode
|
||||
The user identifies properties in the interface they want in their nkode. Each property has an index value.
|
||||
Below, the user has selected `{{ user_passcode }}`. These index values can be represented by anything in the GUI.
|
||||
The only requirement is that the GUI properties be associated with the same index every time the user logs in.
|
||||
If users want to change anything about their interface, they must also change their nkode.
|
||||
|
||||
```
|
||||
username = {{ username }}
|
||||
user_passcode = {{ user_passcode }}
|
||||
selected_keys_set = select_keys_with_passcode_values(user_passcode, signup_interface, keypad_size.props_per_key)
|
||||
|
||||
Selected Keys
|
||||
{{ selected_keys_set }}
|
||||
```
|
||||
|
||||
The user's passcode server side properties are:
|
||||
```
|
||||
server_side_prop = [customer.cipher.prop_key[idx] for idx in user_passcode]
|
||||
|
||||
User Passcode Server-side properties: {{ server_side_prop }}
|
||||
```
|
||||
|
||||
### Confirm nKode
|
||||
The user submits the set interface to the server and receives the _confirm interface_ as a response.
|
||||
The user finds their nKode again.
|
||||
|
||||
```
|
||||
confirm_interface = api.set_nkode(username, customer_id, selected_keys_set, session_id)
|
||||
keypad_view(confirm_interface, keypad_size.numb_of_keys)
|
||||
selected_keys_confirm = select_keys_with_passcode_values(user_passcode, confirm_interface, keypad_size.numb_of_keys)
|
||||
|
||||
Confirm Keypad:
|
||||
{% for key in confirm_keypad -%}
|
||||
Key {{ loop.index }}: {{ key }}
|
||||
{% endfor %}
|
||||
Selected Keys:
|
||||
{{ selected_keys_confirm }}
|
||||
```
|
||||
|
||||
The user submits their confirmation key selection and the user is created
|
||||
```
|
||||
success = api.confirm_nkode(username, customer_id, selected_keys_confirm, session_id)
|
||||
```
|
||||
|
||||
### Passcode Enciphering, Hashing, and Salting
|
||||
When a new user creates an nKode, the server caches its set and confirms the interface and the user's key selection.
|
||||
On the last api.confirm_nkode, the server:
|
||||
|
||||
1. Deduces the user's properties
|
||||
2. Validates the Passcode against the nKodePolicy
|
||||
3. Creates new User Cipher Keys
|
||||
4. Enciphers the user's mask
|
||||
5. Enciphers, salts, and hashes the user's passcode
|
||||
|
||||
Steps 1-2 are straightforward. For a better idea of how they work, see pyNKode.
|
||||
|
||||
#### User Cipher Keys
|
||||
|
||||
##### User Cipher Keys Data Structure
|
||||
```
|
||||
set_key = generate_random_nonrepeating_list(keypad_size.props_per_key, max_numb=2**(8*numb_of_bytes))
|
||||
set_key = xor_lists(set_key, customer_prop.set_vals)
|
||||
|
||||
UserCipherKeys(
|
||||
prop_key=generate_random_nonrepeating_list(keypad_size.props_per_key * keypad_size.numb_of_keys, max_numb=2**(8*numb_of_bytes)),
|
||||
pass_key=generate_random_nonrepeating_list(max_nkode_len, max_numb=2**(8*numb_of_bytes)),
|
||||
mask_key=generate_random_nonrepeating_list(max_nkode_len, max_numb=2**(8*numb_of_bytes)),
|
||||
set_key=set_key,
|
||||
salt=bcrypt.gensalt(),
|
||||
max_nkode_len=max_nkode_len
|
||||
)
|
||||
```
|
||||
|
||||
##### User Cipher Keys Values
|
||||
```
|
||||
user_cipher = UserCipherKeys(
|
||||
prop_key = {{ user_cipher.prop_key }},
|
||||
pass_key = {{ user_cipher.pass_key }},
|
||||
mask_key = {{ user_cipher.mask_key }},
|
||||
set_key = {{ user_cipher.set_key }},
|
||||
salt = {{ user_cipher.salt }},
|
||||
max_nkode_len = {{ user_cipher.max_nkode_len }}
|
||||
)
|
||||
```
|
||||
|
||||
The method UserCipherKeys.encipher_nkode secures a user's nKode in the database. This method is called in api.confirm_nkode
|
||||
|
||||
```
|
||||
class EncipheredNKode(BaseModel):
|
||||
code: str
|
||||
mask: str
|
||||
```
|
||||
|
||||
#### Mask Enciphering
|
||||
|
||||
Recall:
|
||||
|
||||
- set_key_i = (set_rand_numb_i ^ set_val_i)
|
||||
- mask_key_i = mask_rand_numb_i
|
||||
- padded_passcode_server_set_i = set_val_i
|
||||
- len(set_key) == len(mask_key) == (padded_passcode_server_set) == max_nkode_len == 10
|
||||
where i is the index
|
||||
|
||||
- mask_i = mask_key_i ^ padded_passcode_server_set_i ^ set_key_i
|
||||
- mask_i = mask_rand_num_i ^ set_val_i ^ set_rand_numb_i ^ set_val_i
|
||||
- mask_i = mask_rand_num_i ^ set_rand_numb_i # set_val_i is cancelled out
|
||||
|
||||
|
||||
```
|
||||
passcode = {{ user_passcode }}
|
||||
passcode_server_prop = [customer.cipher.prop_key[idx] for idx in passcode]
|
||||
passcode_server_set = [customer.cipher.get_prop_set_val(prop) for prop in passcode_server_prop]
|
||||
|
||||
Passcode Set Vals: {{ passcode_server_prop }}
|
||||
Passcode prop Vals: {{ passcode_server_set }}
|
||||
```
|
||||
|
||||
```
|
||||
padded_passcode_server_set = user_cipher.pad_user_mask(passcode_server_set, customer.nkode_policy.max_nkode_len)
|
||||
|
||||
set_idx = [customer.cipher.get_set_index(set_val) for set_val in padded_passcode_server_set]
|
||||
mask_set_keys = [user_cipher.set_key[idx] for idx in set_idx]
|
||||
|
||||
ciphered_mask = xor_lists(mask_set_keys, padded_passcode_server_set)
|
||||
ciphered_mask = xor_lists(ciphered_mask, user_cipher.mask_key)
|
||||
|
||||
mask = user_cipher.encode_base64_str(ciphered_mask)
|
||||
Mask: {{ enciphered_nkode.mask }}
|
||||
```
|
||||
|
||||
#### Passcode Enciphering and Hashing
|
||||
|
||||
- ciphered_customer_prop = prop_key ^ customer_prop
|
||||
- ciphered_passcode_i = pass_key_i ^ ciphered_customer_prop_i
|
||||
- code = hash(ciphered_passcode, salt)
|
||||
|
||||
```
|
||||
ciphered_customer_props = xor_lists(customer.cipher.prop_key, user_cipher.prop_key)
|
||||
passcode_ciphered_props = [ciphered_customer_props[idx] for idx in passcode]
|
||||
pad_len = customer.nkode_policy.max_nkode_len - passcode_len
|
||||
|
||||
passcode_ciphered_props.extend([0 for _ in range(pad_len)])
|
||||
|
||||
ciphered_code = xor_lists(passcode_ciphered_props, user_cipher.pass_key)
|
||||
|
||||
passcode_bytes = int_array_to_bytes(ciphered_code)
|
||||
passcode_digest = base64.b64encode(hashlib.sha256(passcode_bytes).digest())
|
||||
hashed_data = bcrypt.hashpw(passcode_digest, user_cipher.salt)
|
||||
code = hashed_data.decode("utf-8")
|
||||
|
||||
Code: {{ enciphered_nkode.code }}
|
||||
```
|
||||
|
||||
## User Login
|
||||
To login, a user:
|
||||
|
||||
1. Gets login interface
|
||||
2. Submits key entry
|
||||
|
||||
### Get Login Interface
|
||||
The client requests the user's login interface.
|
||||
```
|
||||
login_interface = api.get_login_interface(username, customer_id)
|
||||
keypad_view(login_interface, keypad_size.props_per_key)
|
||||
```
|
||||
The server returns a randomly shuffled interface. Learn more about how the [User Interface Shuffle](nkode_concepts.md/#user-interface-shuffle) works
|
||||
```
|
||||
Login Interface Keypad View:
|
||||
{% for key in login_keypad -%}
|
||||
Key {{ loop.index }}: {{ key }}
|
||||
{% endfor %}
|
||||
```
|
||||
Recall the user's passcode is `user_passcode = {{ user_passcode }}` so the user selects keys ` selected_keys_login = {{ selected_login_keys }}`
|
||||
|
||||
```
|
||||
success = api.login(customer_id, username, selected_keys_login)
|
||||
```
|
||||
|
||||
### Validate Login Key Entry
|
||||
- decipher user mask and recover nkode set values
|
||||
- get presumed property from key selection and set values
|
||||
- encipher, salt, and hash presumed property values and compare them to the users hashed code
|
||||
|
||||
#### Decipher Mask
|
||||
|
||||
Recall:
|
||||
|
||||
- set_key_i = (set_key_rand_numb_i ^ set_val_i)
|
||||
- mask_i = mask_key_rand_num_i ^ set_key_rand_numb_i
|
||||
|
||||
Recover nKode set values:
|
||||
|
||||
- decode mask from base64 to int
|
||||
- deciphered_mask = mask ^ mask_key
|
||||
- deciphered_mask_i = set_key_rand_numb # mask_key_rand_num_i is cancelled out
|
||||
- set_key_rand_component = set_key ^ set_values
|
||||
- deduce the set value
|
||||
|
||||
```
|
||||
user = customer.users[username]
|
||||
user_cipher = user.user_cipher
|
||||
user_mask = user.enciphered_passcode.mask
|
||||
decoded_mask = user_cipher.decode_base64_str(user_mask)
|
||||
deciphered_mask = xor_lists(decoded_mask, user_cipher.mask_key)
|
||||
set_key_rand_component = xor_lists(set_vals, user_cipher.set_key)
|
||||
passcode_sets = []
|
||||
for set_cipher in deciphered_mask[:passcode_len]:
|
||||
set_idx = set_key_rand_component.index(set_cipher)
|
||||
passcode_sets.append(set_vals[set_idx])
|
||||
|
||||
Passcode Sets: {{ login_passcode_sets }}
|
||||
```
|
||||
|
||||
|
||||
### Get Presumed properties
|
||||
```
|
||||
set_vals_idx = [customer.cipher.get_set_index(set_val) for set_val in passcode_sets]
|
||||
|
||||
presumed_selected_properties_idx = []
|
||||
for idx in range(passcode_len):
|
||||
key_numb = selected_keys_login[idx]
|
||||
set_idx = set_vals_idx[idx]
|
||||
selected_prop_idx = customer.users[username].user_interface.get_prop_idx_by_keynumb_setidx(key_numb, set_idx)
|
||||
presumed_selected_properties_idx.append(selected_prop_idx)
|
||||
|
||||
Presumped Passcode: {{ presumed_selected_properties_idx }}
|
||||
Recall User Passcode: {{ user_passcode }}
|
||||
```
|
||||
### Compare Enciphered Passcodes
|
||||
```
|
||||
enciphered_nkode = user_cipher.encipher_salt_hash_code(presumed_selected_properties_idx, customer.cipher)
|
||||
```
|
||||
If `enciphered_nkode == user.enciphered_passcode.code`, the user's key selection is valid, and the login is successful.
|
||||
|
||||
## Renew properties
|
||||
properties renew is invoked with the renew_properties method: `api.renew_properties(customer_id)`
|
||||
The renew properties process has three steps:
|
||||
1. Renew Customer properties
|
||||
2. Renew User Keys
|
||||
3. Refresh User on Login
|
||||
|
||||
When the customer calls the `renew_properties` method, the method replaces the customer's properties and set values. All its users go through an intermediate
|
||||
renewal step. The users fully renew after their first successful login. This first login refreshes their keys, salt, and hash with new values.
|
||||
|
||||
|
||||
### Customer Renew
|
||||
Old Customer properties and set values are cached and copied to variables before renewal.
|
||||
```
|
||||
old_sets = customer.cipher.set_key
|
||||
|
||||
Customer Sets: {{ customer_set_vals }}
|
||||
```
|
||||
|
||||
```
|
||||
old_prop = customer.cipher.prop_key
|
||||
|
||||
Customer properties:
|
||||
{% for props in customer_prop_view -%}
|
||||
{{ props }}
|
||||
{% endfor %}
|
||||
```
|
||||
|
||||
After the renewal, the customer properties and sets are new randomly generated values.
|
||||
```
|
||||
api.renew_properties(customer_id)
|
||||
|
||||
set_vals = customer.cipher.set_key
|
||||
|
||||
Customer Sets: {{ customer_new_set_vals }}
|
||||
```
|
||||
|
||||
```
|
||||
prop_vals = customer.cipher.prop_key
|
||||
|
||||
Customer properties:
|
||||
{% for props in customer_new_prop_view -%}
|
||||
{{ props }}
|
||||
{% endfor %}
|
||||
```
|
||||
|
||||
### Renew User
|
||||
During the renewal, each user goes through a temporary transition period.
|
||||
```
|
||||
props_xor = xor_lists(new_props, old_props)
|
||||
sets_xor = xor_lists(new_sets, old_sets)
|
||||
for user in customer.users.values():
|
||||
user.renew = True
|
||||
user.user_cipher.set_key = xor_lists(user.user_cipher.set_key, sets_xor)
|
||||
user.user_cipher.prop_key = xor_lists(user.user_cipher.prop_key, props_xor)
|
||||
```
|
||||
##### User prop Key
|
||||
The user's prop key was a randomly generated list of length `numb_of_keys * prop_per_key`.
|
||||
Now each value in the prop key is `prop_key_i = old_prop_key_i ^ new_prop_i ^ old_prop_i`.
|
||||
Recall in the login process, `ciphered_customer_props = prop_key ^ customer_prop`.
|
||||
Since the customer_prop is now the new value, it gets canceled out, leaving:
|
||||
```
|
||||
new_prop_key = old_prop_key ^ old_prop ^ new_prop
|
||||
ciphered_customer_props = new_prop_key ^ new_prop
|
||||
ciphered_customer_props = old_prop_key ^ old_prop # since new_prop cancel out
|
||||
```
|
||||
Using the new customer properties, we can validate the user's login attempt with the same hash.
|
||||
|
||||
##### User Set Key
|
||||
The user's set key was a randomly generated list of length `prop_per_key` xor `customer_set_vals`.
|
||||
The `old_set_vals` have been replaced with the new `new_set_vals`. The deciphering process described above
|
||||
remains the same.
|
||||
|
||||
### User Refresh
|
||||
Once the user has a successful login, they get a new salt and cipher keys, and their `enciphered_passcode` is recomputed
|
||||
with the new values.
|
||||
```
|
||||
user.user_cipher = UserCipherKeys.new(
|
||||
customer.cipher.keypad_size,
|
||||
customer.cipher.set_key,
|
||||
user.user_cipher.max_nkode_len
|
||||
)
|
||||
user.enciphered_passcode = user.user_cipher.encipher_nkode(presumed_selected_properties_idx, customer.cipher)
|
||||
user.renew = False
|
||||
```
|
||||
@@ -1,204 +0,0 @@
|
||||
import numpy as np
|
||||
from jinja2 import Environment, FileSystemLoader
|
||||
import os
|
||||
from src.nkode_api import NKodeAPI
|
||||
from src.models import NKodePolicy, KeypadSize, EncipheredNKode
|
||||
from src.user_cipher import UserCipher
|
||||
from secrets import choice
|
||||
from string import ascii_lowercase
|
||||
import bcrypt
|
||||
import hashlib
|
||||
import base64
|
||||
|
||||
|
||||
def random_username() -> str:
|
||||
return "test_username" + "".join([choice(ascii_lowercase) for _ in range(6)])
|
||||
|
||||
|
||||
def select_keys_with_passcode_values(user_passcode: list[int], keypad: np.ndarray, props_per_key: int) -> list[int]:
|
||||
indices = [np.where(keypad == prop)[0][0] for prop in user_passcode]
|
||||
return [int(index // props_per_key) for index in indices]
|
||||
|
||||
|
||||
def visualize_keypad(keypad_list: np.ndarray, props_per_key: int):
|
||||
print("Keypad View")
|
||||
keypad_mat = keypad_list.reshape(-1, props_per_key)
|
||||
for idx, key_vals in enumerate(keypad_mat):
|
||||
print(f"Key {idx}: {key_vals}")
|
||||
|
||||
|
||||
def render_nkode_authentication(data: dict):
|
||||
# Set up the Jinja2 environment and template loader
|
||||
file_loader = FileSystemLoader('')
|
||||
env = Environment(loader=file_loader)
|
||||
|
||||
# Load the template
|
||||
template = env.get_template('readme_template.md')
|
||||
|
||||
print(os.getcwd())
|
||||
# Render the template with the data
|
||||
output = template.render(data)
|
||||
|
||||
# Print or save the output
|
||||
# output_file = os.path.expanduser("~/Desktop/nkode_authentication.md")
|
||||
output_file = '../README.md'
|
||||
with open(output_file, 'w') as fp:
|
||||
fp.write(output)
|
||||
print("File written successfully")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
api = NKodeAPI()
|
||||
|
||||
policy = NKodePolicy(
|
||||
max_nkode_len=10,
|
||||
min_nkode_len=4,
|
||||
distinct_positions=0,
|
||||
distinct_properties=4,
|
||||
byte_len=2,
|
||||
)
|
||||
keypad_size = KeypadSize(
|
||||
numb_of_keys=5,
|
||||
props_per_key=6 # aka number of sets
|
||||
)
|
||||
customer_id = api.create_new_customer(keypad_size, policy)
|
||||
customer = api.customers[customer_id]
|
||||
|
||||
set_vals = customer.cipher.position_key
|
||||
prop_vals = customer.cipher.property_key
|
||||
customer_prop_view = prop_vals.reshape(-1, keypad_size.props_per_key)
|
||||
|
||||
prop_keypad_view = prop_vals.reshape(-1, keypad_size.props_per_key)
|
||||
prop_set_view = prop_keypad_view.T
|
||||
set_property_dict = dict(zip(set_vals, prop_set_view))
|
||||
|
||||
session_id, signup_interface = api.generate_signup_keypad(customer_id)
|
||||
signup_keypad = signup_interface.reshape(-1, keypad_size.numb_of_keys)
|
||||
|
||||
username = random_username()
|
||||
passcode_len = 4
|
||||
user_passcode = signup_interface[:passcode_len].tolist()
|
||||
selected_keys_set = select_keys_with_passcode_values(user_passcode, signup_interface, keypad_size.numb_of_keys)
|
||||
server_side_prop = [customer.cipher.property_key[idx] for idx in user_passcode]
|
||||
|
||||
confirm_interface = api.set_nkode(username, customer_id, selected_keys_set, session_id)
|
||||
|
||||
confirm_keypad = confirm_interface.reshape(-1, keypad_size.numb_of_keys)
|
||||
|
||||
selected_keys_confirm = select_keys_with_passcode_values(user_passcode, confirm_interface, keypad_size.numb_of_keys)
|
||||
|
||||
success = api.confirm_nkode(username, customer_id, selected_keys_confirm, session_id)
|
||||
assert success
|
||||
passcode_server_prop = [customer.cipher.property_key[idx] for idx in user_passcode]
|
||||
passcode_server_set = customer.cipher.get_props_position_vals(user_passcode)
|
||||
user_keys = customer.users[username].cipher
|
||||
# TODO: pad_user_mask is deprecated
|
||||
padded_passcode_server_set = user_keys.pad_user_mask(np.array(passcode_server_set), customer.cipher.position_key)
|
||||
|
||||
set_idx = [customer.cipher.get_position_index(set_val) for set_val in padded_passcode_server_set]
|
||||
mask_set_keys = [user_keys.combined_position_key[idx] for idx in set_idx]
|
||||
ciphered_mask = mask_set_keys ^ padded_passcode_server_set ^ user_keys.mask_key
|
||||
mask = user_keys.encode_base64_str(ciphered_mask)
|
||||
ciphered_customer_props = customer.cipher.property_key ^ user_keys.property_key
|
||||
passcode_ciphered_props = [ciphered_customer_props[idx] for idx in user_passcode]
|
||||
pad_len = customer.nkode_policy.max_nkode_len - passcode_len
|
||||
passcode_ciphered_props.extend([0 for _ in range(pad_len)])
|
||||
ciphered_code = np.bitwise_xor(passcode_ciphered_props, user_keys.pass_key)
|
||||
passcode_bytes = ciphered_code.tobytes()
|
||||
passcode_digest = base64.b64encode(hashlib.sha256(passcode_bytes).digest())
|
||||
hashed_data = bcrypt.hashpw(passcode_digest, bcrypt.gensalt(rounds=12))
|
||||
code = hashed_data.decode("utf-8")
|
||||
|
||||
enciphered_nkode = EncipheredNKode(
|
||||
mask=mask,
|
||||
code=code,
|
||||
)
|
||||
"""
|
||||
USER LOGIN
|
||||
"""
|
||||
login_interface = api.get_login_keypad(username, customer_id)
|
||||
login_keypad = login_interface.reshape(-1, keypad_size.props_per_key)
|
||||
selected_keys_login = select_keys_with_passcode_values(user_passcode, login_interface, keypad_size.props_per_key)
|
||||
success = api.login(customer_id, username, selected_keys_login)
|
||||
assert success
|
||||
|
||||
"""
|
||||
VALIDATE LOGIN KEY ENTRY
|
||||
DECIPHER MASK
|
||||
"""
|
||||
|
||||
user = customer.users[username]
|
||||
set_vals = customer.cipher.position_key
|
||||
user_keys = user.cipher
|
||||
user_mask = user.enciphered_passcode.mask
|
||||
decoded_mask = user_keys.decode_base64_str(user_mask)
|
||||
deciphered_mask = np.bitwise_xor(decoded_mask, user_keys.mask_key)
|
||||
set_key_rand_component = np.bitwise_xor(set_vals, user_keys.combined_position_key)
|
||||
login_passcode_sets = []
|
||||
for set_cipher in deciphered_mask[:passcode_len]:
|
||||
set_idx = np.where(set_key_rand_component == set_cipher)[0][0]
|
||||
login_passcode_sets.append(int(set_vals[set_idx]))
|
||||
|
||||
"""
|
||||
GET PRESUMED properties
|
||||
"""
|
||||
|
||||
set_vals_idx = [customer.cipher.get_position_index(set_val) for set_val in login_passcode_sets]
|
||||
presumed_selected_properties_idx = customer.users[username].user_keypad.get_prop_idxs_by_keynumb_setidx(selected_keys_login, set_vals_idx)
|
||||
"""
|
||||
RENEW KEYS
|
||||
"""
|
||||
|
||||
old_props = customer.cipher.property_key.copy()
|
||||
old_sets = customer.cipher.position_key.copy()
|
||||
customer.cipher.renew()
|
||||
new_props = customer.cipher.property_key
|
||||
new_sets = customer.cipher.position_key
|
||||
customer_new_prop_view = new_props.reshape(-1, keypad_size.props_per_key)
|
||||
"""
|
||||
RENEW USER
|
||||
"""
|
||||
props_xor = np.bitwise_xor(new_props, old_props)
|
||||
sets_xor = np.bitwise_xor(new_sets, old_sets)
|
||||
for user in customer.users.values():
|
||||
user.renew = True
|
||||
user.cipher.combined_position_key = np.bitwise_xor(user.cipher.combined_position_key, sets_xor)
|
||||
user.cipher.property_key = np.bitwise_xor(user.cipher.property_key, props_xor)
|
||||
|
||||
"""
|
||||
REFRESH USER KEYS
|
||||
"""
|
||||
user.cipher = UserCipher.create(
|
||||
customer.cipher.keypad_size,
|
||||
customer.cipher.position_key,
|
||||
user.cipher.max_nkode_len
|
||||
)
|
||||
user.enciphered_passcode = user.cipher.encipher_nkode(presumed_selected_properties_idx, customer.cipher)
|
||||
user.renew = False
|
||||
|
||||
# Define some data to pass to the template
|
||||
data = {
|
||||
'keypad_size': keypad_size,
|
||||
'customer_set_vals': set_vals,
|
||||
'customer_prop_view': customer_prop_view,
|
||||
'set_property_dict': set_property_dict,
|
||||
'set_signup_keypad': signup_keypad,
|
||||
'username': 'test_user',
|
||||
'passcode_property_indices': user_passcode,
|
||||
'selected_keys_set': selected_keys_set,
|
||||
'server_side_prop': server_side_prop,
|
||||
'confirm_keypad': confirm_keypad,
|
||||
'selected_keys_confirm': selected_keys_confirm,
|
||||
'user_cipher': user_keys,
|
||||
'ordered_customer_prop_key': passcode_server_prop,
|
||||
'ordered_customer_set_key': passcode_server_set,
|
||||
'enciphered_nkode': enciphered_nkode,
|
||||
'login_keypad': login_keypad,
|
||||
'selected_login_keys': selected_keys_login,
|
||||
'login_passcode_sets': login_passcode_sets,
|
||||
'presumed_selected_properties_idx': presumed_selected_properties_idx,
|
||||
'customer_new_prop_view': customer_new_prop_view,
|
||||
'customer_new_set_vals': new_sets,
|
||||
|
||||
}
|
||||
render_nkode_authentication(data)
|
||||
Reference in New Issue
Block a user