281 lines
5.9 KiB
Markdown
281 lines
5.9 KiB
Markdown
# Permutation Algebra
|
|
This notebook is a prerequisite to the [DARC](darc.md) tutorial
|
|
|
|
|
|
|
|
## Key Generation Parameters
|
|
- key height: The alphabet length. To encode bytes, our alphabet length is 256.
|
|
To encode lowercase letters a-z our alphabet length is 26. To encode a {{ height }} key {{ width }} attribute nKode interface, our alphabet is `{{ height }} x {{ width }} = {{ total_attr }}`.
|
|
|
|
- key width: The number of bytes an encrypted character is in our alphabet.
|
|
|
|
|
|
In this document, we will use the following parameters:
|
|
```
|
|
height = {{ height }}
|
|
width = {{ width }}
|
|
```
|
|
|
|
## Operand Types
|
|
### Inner Permutation Key
|
|
An inner permutation key (inner key for short) is a list of `height` rows, each a random permutation of an identity array of length `width`.
|
|
|
|
```
|
|
i0 = InnerKey.init_matrix(width, height)
|
|
i1 = InnerKey.init_matrix(width, height)
|
|
i2 = InnerKey.init_matrix(width, height)
|
|
i_identity = InnerKey.init_identity_matrix(width, height)
|
|
|
|
i0.matrix:
|
|
{% for row in i0.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
|
|
i1.matrix:
|
|
{% for row in i1.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
|
|
i2.matrix:
|
|
{% for row in i2.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
|
|
i_identity.matrix:
|
|
{% for row in i_identity.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
```
|
|
|
|
|
|
### Outer Permutation Key
|
|
An outer key is a list of `height` columns, each a random permutation of an identity array of length `height`.
|
|
It is used to permute the rows of inner, substitution and outer keys.
|
|
|
|
```
|
|
o0 = OuterKey.init_matrix(height)
|
|
o1 = OuterKey.init_matrix(height)
|
|
o2 = OuterKey.init_matrix(height)
|
|
o_identity = OuterKey.init_identity_matrix(height)
|
|
|
|
o0.matrix:
|
|
{{ o0.matrix }}
|
|
|
|
o1.matrix:
|
|
{{ o1.matrix }}
|
|
|
|
o2.matrix:
|
|
{{ o2.matrix }}
|
|
|
|
o_identity.matrix:
|
|
{{ o_identity.matrix }}
|
|
```
|
|
|
|
### Substitution Key
|
|
Substitution key is a matrix of `height` rows and `width` columns. Each row is a list of randomly generated bytes.
|
|
|
|
```
|
|
s0 = SubstitutionKey.init_matrix(width, height)
|
|
s1 = SubstitutionKey.init_matrix(width, height)
|
|
s2 = SubstitutionKey.init_matrix(width, height)
|
|
s_identity = SubstitutionKey.init_identity_matrix(width, height)
|
|
|
|
s0.matrix:
|
|
{% for row in s0.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
|
|
s1.matrix:
|
|
{% for row in s1.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
|
|
s2.matrix:
|
|
{% for row in s2.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
|
|
s_identity.matrix:
|
|
{% for row in s_identity.matrix -%}
|
|
{{ row }}
|
|
{% endfor %}
|
|
```
|
|
|
|
|
|
## Operators Types
|
|
### < Outer Permutation
|
|
#### Substitution Key < Outer Key
|
|
```
|
|
s0_o0 = s0 < o0
|
|
```
|
|
|
|
| idx |s0|s0| s0_o0 |
|
|
|-----|-|-|-------|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ s0.matrix[idx] }}|{{ o0.matrix[0][idx] }}|{{ s0_o0.matrix[idx] }}|
|
|
{% endfor %}
|
|
|
|
#### Inner Key < Outer Key
|
|
i0_o0 = i0 < o0
|
|
|
|
| idx | i0 | o0 | i0_o0 |
|
|
|-----|----|----|-------|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ i0.matrix[idx] }}|{{ o0.matrix[0][idx] }}|{{ i0_o0.matrix[idx] }}|
|
|
{% endfor %}
|
|
|
|
### << Inner Permutation
|
|
#### Outer Key << Outer Key
|
|
o0_o1 = o0 << o1
|
|
|
|
| idx | o0 | o1 | o0_o1 |
|
|
|-----|----|----|-------|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ o0.matrix[0][idx] }}|{{ o1.matrix[0][idx] }}|{{ o0_o1.matrix[0][idx] }}|
|
|
{% endfor %}
|
|
|
|
#### Inner Key << Inner Key
|
|
i0_i1 = i0 << i1
|
|
|
|
| idx | i0 | i1 | i0_i1 |
|
|
|-----|----------------------------------------------------------|----|-------|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ i0.matrix[idx] }}|{{ i1.matrix[idx] }}|{{ i0_i1.matrix[idx] }}|
|
|
{% endfor %}
|
|
|
|
#### Substitution Key << Inner Key
|
|
s0_i0 = s0 << i0
|
|
|
|
| idx | s0 | i0 | s0_i0 |
|
|
|-----|----|----|-------|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ s0.matrix[idx] }}|{{ i0.matrix[idx] }}|{{ s0_i0.matrix[idx] }}|
|
|
{% endfor %}
|
|
|
|
### ~Permutation Inversion
|
|
#### ~Outer Key
|
|
inv_o0 = ~o0
|
|
|
|
| idx | o0 | ~o0 |
|
|
|-----|----|-----|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ o0.matrix[0][idx] }}|{{ inv_o0.matrix[0][idx] }}|
|
|
{% endfor %}
|
|
|
|
|
|
#### ~Inner Key
|
|
inv_i0 = ~i0
|
|
|
|
| idx | i0 | ~i0 |
|
|
|-----|----|-----|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ i0.matrix[idx] }}|{{ inv_i0.matrix[idx] }}|
|
|
{% endfor %}
|
|
|
|
### ^ Substitution
|
|
#### Substitution Key ^ Substitution Key
|
|
s0_s1 = s0 ^ s1
|
|
|
|
| idx | s0 | s1 | s0_s1 |
|
|
|-----|----|----|-------|
|
|
{% for idx in range(height) -%}
|
|
|{{idx}}|{{ s0.matrix[idx] }}|{{ s1.matrix[idx] }}|{{ s0_s1.matrix[idx] }}|
|
|
{% endfor %}
|
|
|
|
## Substitution Permutation Algebra
|
|
#### properites:
|
|
- associative: (a + b) + c = a + (b + c)
|
|
- commutative: a + b = b + a
|
|
- identity: a + 0 = a or a * 1 = a
|
|
- inverse: a + (-a) = 0 or a * 1/a = 1 (for all a ~= 0)
|
|
- distributive: a(b + c) = ab + ac
|
|
|
|
### Associative
|
|
#### Outer Key
|
|
```
|
|
(o0 << o1 << o2) == ((o0 << o1) << o2) == (o0 << (o1 << o2))
|
|
```
|
|
#### Inner Key
|
|
```
|
|
(i0 << i1 << i2) == ((i0 << i1) << i2) == (i0 << (i1 << i2))
|
|
```
|
|
|
|
#### Substitution Key
|
|
```
|
|
(s0 ^ s1 ^ s2) == ((s0 ^ s1) ^ s2) == (s0 ^ (s1 ^ s2))
|
|
```
|
|
|
|
### Commutative Property
|
|
Substitution is the only key type that is commutative
|
|
|
|
#### Substitution Key
|
|
```
|
|
(s0 ^ s1) == (s1 ^ s0)
|
|
```
|
|
|
|
### Identity Property
|
|
#### Outer Key
|
|
```
|
|
(o0 << o_identity) == o0
|
|
```
|
|
|
|
#### Inner Key
|
|
```
|
|
(i0 << i_identity) == i0
|
|
```
|
|
|
|
#### Substitution Key
|
|
```
|
|
(s0 ^ s_identity) == s0
|
|
```
|
|
|
|
### Inverse Property
|
|
#### Outer Key
|
|
```
|
|
(o0 << ~o0) == o_identity
|
|
```
|
|
|
|
#### Inner Key
|
|
```
|
|
(i0 << ~i0) == i_identity
|
|
```
|
|
|
|
#### Substitution Key
|
|
```
|
|
(s0 ^ s0) == s_identity
|
|
```
|
|
|
|
### Distributive
|
|
#### Inner Key/Outer Key
|
|
```
|
|
((i0 << i1) < o0) == ((i0 < o0) << (i1 < o0))
|
|
```
|
|
|
|
#### Substitution Key/Outer Key
|
|
```
|
|
((s0 ^ s1) < o0) == ((s0 < o0) ^ (s1 < o0))
|
|
```
|
|
#### Substitution Key/Inner Key
|
|
```
|
|
((s0 ^ s1) << i0) == ((s0 << i0) ^ (s1 << i0))
|
|
```
|
|
#### Substitution Key/Inner Key/Outer Key
|
|
```
|
|
((s0 << i0) < o0) == ((s0 < o0) << (i0 < o0))
|
|
```
|
|
### Other Examples
|
|
```
|
|
(s0 << (i0 < o0)) == (((s0 < ~o0) << i0) < o0)
|
|
((s0 < o0) << i0) == ((s0 << (i0 < ~o0)) < o0)
|
|
(~(i0 << i1)) == (~i1 << ~i0)
|
|
(~(o0 << o1)) == (~o1 << ~o0)
|
|
i0 == ((i0 << i2 << i1) << ~(i2 << i1)) == ((i0 << i2 << i1) << ~i1 << ~i2)
|
|
```
|
|
|
|
### Becareful about your order of operation
|
|
***Always use parenthesis to control the order of operation***
|
|
|
|
```
|
|
i0 < (o0 << o1 << o2) != (i0 < (o0 << o1 << o2)) # not equal !!!!!!
|
|
```
|