14 Commits

Author SHA1 Message Date
68c79467e4 implement cli for benchmarking and evilnkode 2025-09-09 13:21:27 -05:00
aa2e949938 implement keypad ABC 2025-09-08 12:11:29 -05:00
dkelly
6c07d62cbe implement replay analysis (#7)
Co-authored-by: Donovan <donovan.a.kelly@pm.me>
Reviewed-on: https://git.infra.nkode.tech/dkelly/evilnkode/pulls/7
2025-09-05 16:02:29 +00:00
dkelly
6d07c24c71 Merge pull request 'TowerShuffle' (#6) from TowerShuffle into main
Reviewed-on: https://git.infra.nkode.tech/dkelly/evilnkode/pulls/6
2025-08-29 19:19:19 +00:00
c84b4067d6 create observations 2025-08-29 14:17:38 -05:00
76416aae95 implement tower shuffle 2025-08-29 14:14:37 -05:00
2ef80e8878 implement tower shuffle 2025-08-28 15:47:43 -05:00
dkelly
0b39710a78 Merge pull request 'fix visualnkode' (#5) from BugFixFullShuffle into main
Reviewed-on: https://git.infra.nkode.tech/dkelly/evilnkode/pulls/5
2025-08-21 15:49:44 +00:00
d43a772195 fix visualnkode 2025-08-21 10:49:08 -05:00
dkelly
fecbf3cd19 Merge pull request 'evenly spaced boxes' (#4) from evenlySpacedBoxes into main
Reviewed-on: https://git.infra.nkode.tech/dkelly/evilnkode/pulls/4
2025-08-19 16:11:08 +00:00
e19ae07444 evenly spaced boxes 2025-08-19 11:10:38 -05:00
dkelly
03d5ef14ae Merge pull request 'visualNKode' (#3) from visualNKode into main
Reviewed-on: https://git.infra.nkode.tech/dkelly/evilnkode/pulls/3
2025-08-19 16:06:33 +00:00
4fa7a621d7 implement visualnkode.py 2025-08-19 11:05:05 -05:00
d0329090ac small changes 2025-08-19 09:47:39 -05:00
21 changed files with 1593 additions and 636 deletions

2
.gitignore vendored
View File

@@ -2,3 +2,5 @@
.DS_Store
output
__pycache__
.ipynb_checkpoints

View File

@@ -1,36 +1,90 @@
# Evil nKode
# Evilnkode Project
Simulated nKode Cracker
This README provides instructions for setting up and running the `evilnkode` project using Conda, activating the environment, and executing the provided CLI scripts. It also covers how to access help for command-line options.
## Installation
## Prerequisites
- Python version 3.10 or greater is required
- Install anaconda (or your preferred tool for environment management)
- **Conda**: Ensure you have Conda installed (Miniconda or Anaconda). Download from [conda.io](https://conda.io).
## Setting Up the Environment
To set up the project environment using the provided `environment.yaml` file, follow these steps:
1. **Install the environment**:
- Ensure you are in the project root directory where `environment.yaml` is located.
- Run the following command to create the `evilnkode` environment:
```bash
conda env create -f environment.yaml
```
- This will install all dependencies specified in `environment.yaml`.
## Activating the Environment
To activate the `evilnkode` environment, run:
### Using conda
```bash
conda env create -f environment.yml
conda activate pynkode
conda activate evilnkode
```
## Starting a Jupyter Notebook
Once activated, your terminal prompt should change to include `(evilnkode)`, indicating the environment is active.
## Running CLI Scripts
The project includes two main CLI scripts: `cli.visualnkode` and `cli.benchmark_histogram`. Below are instructions to run each.
### Running `cli.visualnkode`
To execute the `visualnkode` CLI script:
### Option 1: Using classic Jupyter Notebook
```bash
# Ensure your environment is activated
# For conda: conda activate pynkode
# For pyenv: (should be automatic if in the directory)
# Start the Jupyter Notebook server
jupyter notebook
python -m cli.visualnkode
```
### Option 2: Using JupyterLab
- This command runs the `visualnkode` module from the `cli` package.
- To view available options and arguments, use the `-help` flag:
```bash
python -m cli.visualnkode -help
```
### Running `cli.benchmark_histogram`
To execute the `benchmark_histogram` CLI script:
```bash
# Ensure your environment is activated
# Start JupyterLab
jupyter lab
python -m cli.benchmark_histogram
```
## Notebooks
- [evilnkode](notebooks/evilkode.ipynb)
- This command runs the `benchmark_histogram` module, which may generate output such as benchmark results or histograms. For example, it might produce output like:
```
File exists: output/slidingtowershufflekeypad-6-8-4-5-4-4-10000/benchmark/slidingtowershufflekeypad-6-8-4-5-4-4-10000.pkl
Bench SlidingTowerShuffle Break 5
Bench SlidingTowerShuffle Replay 5
```
- To view available options and arguments, use the `-help` flag:
```bash
python -m cli.benchmark_histogram -help
```
## Using the `-help` Flag
Both CLI scripts (`cli.visualnkode` and `cli.benchmark_histogram`) support a `-help` flag to display available command-line options and their descriptions. Run the following to explore options for each script:
```bash
python -m cli.visualnkode -help
python -m cli.benchmark_histogram -help
```
This will provide detailed information about parameters, flags, and usage for each script.
## Project Structure
Key files and directories in the project:
- `environment.yaml`: Conda environment configuration file.
- `cli/`: Contains CLI scripts (`visualnkode` and `benchmark_histogram`).
- `output/`: Directory where script outputs, such as benchmark results, are stored.
- `src/`: Source code for the project.
- `tests/`: Test scripts for the project.
- `requirements.txt`: Additional dependencies (if needed outside Conda).
For further details, explore the project documentation in the `docs/` directory.

0
__init__.py Normal file
View File

0
cli/__init__.py Normal file
View File

115
cli/benchmark_histogram.py Normal file
View File

@@ -0,0 +1,115 @@
import argparse
from src.benchmark import benchmark
import matplotlib.pyplot as plt
from pathlib import Path
from statistics import mean
from src.keypad.keypad import (
RandomSplitShuffleKeypad,
RandomShuffleKeypad,
SlidingSplitShuffleKeypad,
SlidingTowerShuffleKeypad,
)
def bench_histogram(data, title, number_of_keys, properties_per_key, passcode_len, max_tries_before_lockout, complexity,
disparity, run_count, save_path: Path = None):
min_val = min(data)
max_val = max(data)
bins = range(min_val, max_val + 2)
plt.hist(data, bins=bins, edgecolor='black')
plt.title(title)
plt.xlabel('# of Login Observations')
plt.ylabel('Simulations')
text = (f"number_of_keys={number_of_keys}\n"
f"properties_per_key={properties_per_key}\n"
f"passcode_len={passcode_len}\n"
f"max_tries_before_lockout={max_tries_before_lockout}\n"
f"complexity={complexity}\n"
f"disparity={disparity}\n"
f"run_count={run_count}")
plt.text(0.95, 0.95, text, transform=plt.gca().transAxes, fontsize=10,
verticalalignment='top', horizontalalignment='right', bbox=dict(facecolor='white', alpha=0.5))
if save_path:
save_path = save_path / "histogram"
save_path.mkdir(parents=True, exist_ok=True)
filename = (f"{title.replace(' ', '_')}_keys{number_of_keys}_"
f"props{properties_per_key}_pass{passcode_len}_tries{max_tries_before_lockout}_"
f"comp{complexity}_disp{disparity}_runs{run_count}.png")
plt.savefig(save_path / filename, bbox_inches='tight', dpi=300)
plt.close()
def main():
parser = argparse.ArgumentParser(description='Benchmark Keypad Shuffle')
parser.add_argument('--shuffle_type', type=str,
choices=['RandomSplitShuffle', 'RandomShuffle', 'SlidingSplitShuffle', 'SlidingTowerShuffle'],
default='SlidingTowerShuffle', help='Type of keypad shuffle')
parser.add_argument('--number_of_keys', type=int, default=6, help='Number of keys')
parser.add_argument('--properties_per_key', type=int, default=8, help='Properties per key')
parser.add_argument('--passcode_len', type=int, default=4, help='Passcode length')
parser.add_argument('--max_tries_before_lockout', type=int, default=5, help='Max tries before lockout')
parser.add_argument('--complexity', type=int, default=4, help='Complexity')
parser.add_argument('--disparity', type=int, default=4, help='Disparity')
parser.add_argument('--run_count', type=int, default=10000, help='Number of runs')
parser.add_argument('--output_dir', type=str, default='./output',
help='Output directory for histograms')
args = parser.parse_args()
shuffle_classes = {
'RandomSplitShuffle': RandomSplitShuffleKeypad,
'RandomShuffle': RandomShuffleKeypad,
'SlidingSplitShuffle': SlidingSplitShuffleKeypad,
'SlidingTowerShuffle': SlidingTowerShuffleKeypad
}
keypad_class = shuffle_classes[args.shuffle_type]
keypad = keypad_class.new_keypad(args.number_of_keys, args.properties_per_key)
shuffle_type = str(type(keypad)).lower().split('.')[-1].replace("'>", "")
run_name = f"{shuffle_type}-{args.number_of_keys}-{args.properties_per_key}-{args.passcode_len}-{args.max_tries_before_lockout}-{args.complexity}-{args.disparity}-{args.run_count}"
save_path = Path(args.output_dir) / run_name
bench_result = benchmark(
number_of_keys=args.number_of_keys,
properties_per_key=args.properties_per_key,
passcode_len=args.passcode_len,
max_tries_before_lockout=args.max_tries_before_lockout,
run_count=args.run_count,
complexity=args.complexity,
disparity=args.disparity,
keypad=keypad,
file_path=save_path,
)
print(f"Bench {args.shuffle_type} Break {mean(bench_result.iterations_to_break)}")
print(f"Bench {args.shuffle_type} Replay {mean(bench_result.iterations_to_replay)}")
bench_histogram(
bench_result.iterations_to_break,
f"{args.shuffle_type} Break",
args.number_of_keys,
args.properties_per_key,
args.passcode_len,
args.max_tries_before_lockout,
args.complexity,
args.disparity,
args.run_count,
save_path
)
bench_histogram(
bench_result.iterations_to_replay,
f"{args.shuffle_type} Replay",
args.number_of_keys,
args.properties_per_key,
args.passcode_len,
args.max_tries_before_lockout,
args.complexity,
args.disparity,
args.run_count,
save_path,
)
if __name__ == "__main__":
main()

253
cli/visualnkode.py Normal file
View File

@@ -0,0 +1,253 @@
import json
from typing import Iterable
from dataclasses import dataclass, asdict
from src.evilnkode import Observation
from src.utils import observations, passcode_generator
from pathlib import Path
from PIL import Image, ImageDraw, ImageFont
from src.keypad.keypad import (
BaseKeypad,
SlidingSplitShuffleKeypad,
SlidingTowerShuffleKeypad,
RandomShuffleKeypad,
RandomSplitShuffleKeypad,
)
import argparse
@dataclass
class ObservationSequence:
target_passcode: list[int]
observations: list[Observation]
def new_observation_sequence(
keypad: BaseKeypad,
passcode_len: int,
complexity: int,
disparity: int,
numb_runs: int,
) -> ObservationSequence:
passcode = passcode_generator(keypad.k, keypad.p, passcode_len, complexity, disparity)
obs_gen = observations(
keypad=keypad,
target_passcode=passcode,
number_of_observations=numb_runs,
)
return ObservationSequence(target_passcode=passcode, observations=[obs for obs in obs_gen])
def _next_json_filename(base_dir: Path) -> Path:
"""Find the next available observation_X.json file in base_dir."""
counter = 1
while True:
candidate = base_dir / f"observation_{counter}.json"
if not candidate.exists():
return candidate
counter += 1
def save_observation_sequence_to_json(seq: ObservationSequence,
filename: Path) -> None:
filename.parent.mkdir(parents=True, exist_ok=True)
with filename.open("w", encoding="utf-8") as f:
json.dump(asdict(seq), f, indent=4)
# ---------- Helpers ----------
def _load_font(preferred: str, size: int) -> ImageFont.FreeTypeFont | ImageFont.ImageFont:
"""Try a preferred TTF, fall back to common monospace, then PIL default."""
candidates = [
preferred,
"DejaVuSansMono.ttf", # common on Linux
"Consolas.ttf", # Windows
"Menlo.ttc", "Menlo.ttf", # macOS
"Courier New.ttf",
]
for c in candidates:
try:
return ImageFont.truetype(c, size)
except Exception:
continue
return ImageFont.load_default()
def _text_size(draw: ImageDraw.ImageDraw, text: str, font: ImageFont.ImageFont) -> tuple[int, int]:
"""Get (w, h) using font bbox for accurate layout."""
left, top, right, bottom = draw.textbbox((0, 0), text, font=font)
return int(right - left), int(bottom - top)
def _join_nums(nums: Iterable[int]) -> str:
return " ".join(str(n) for n in nums)
def _next_available_path(path: Path) -> Path:
"""If path exists, append _1, _2, ..."""
if not path.exists():
return path
base, suffix = path.stem, path.suffix or ".png"
i = 1
while True:
candidate = path.with_name(f"{base}_{i}{suffix}")
if not candidate.exists():
return candidate
i += 1
# ---------- Core rendering ----------
def render_observation_to_png(
target_passcode: list[int],
obs: Observation,
out_path: Path,
*,
header_font_name: str = "DejaVuSans.ttf",
body_font_name: str = "DejaVuSans.ttf",
header_size: int = 28,
body_size: int = 24,
margin: int = 32,
row_padding_xy: tuple[int, int] = (16, 12), # (x, y) padding inside row box
row_spacing: int = 14,
header_spacing: int = 10,
section_spacing: int = 18,
bg_color: str = "white",
fg_color: str = "black",
row_fill: str = "#f7f7f7",
row_outline: str = "#222222",
):
"""
Render a single observation:
- Top lines:
Target Passcode: {target}
Selected Keys: {selected keys}
- Then a stack of row boxes representing the keypad rows.
"""
out_path.parent.mkdir(parents=True, exist_ok=True)
out_path = _next_available_path(out_path)
# Fonts
header_font = _load_font(header_font_name, header_size)
body_font = _load_font(body_font_name, body_size)
# Prepare strings
header1 = f"Target Passcode: {_join_nums(target_passcode)}"
header2 = f"Selected Keys: {_join_nums(obs.key_selection)}"
row_texts = [_join_nums(row) for row in obs.keypad]
# Measure to compute canvas size
# Provisional image for measurement
temp_img = Image.new("RGB", (1, 1), bg_color)
d = ImageDraw.Draw(temp_img)
h1_w, h1_h = _text_size(d, header1, header_font)
h2_w, h2_h = _text_size(d, header2, header_font)
row_text_sizes = [_text_size(d, t, body_font) for t in row_texts]
row_box_widths = [tw + 2 * row_padding_xy[0] for (tw, th) in row_text_sizes]
row_box_heights = [th + 2 * row_padding_xy[1] for (tw, th) in row_text_sizes]
content_width = max([h1_w, h2_w] + (row_box_widths or [0]))
total_rows_height = sum(row_box_heights) + row_spacing * max(0, len(row_box_heights) - 1)
width = content_width + 2 * margin
height = (
margin
+ h1_h
+ header_spacing
+ h2_h
+ section_spacing
+ total_rows_height
+ margin
)
# Create final image
img = Image.new("RGB", (max(width, 300), max(height, 200)), bg_color)
draw = ImageDraw.Draw(img)
# Draw headers
x = margin
y = margin
draw.text((x, y), header1, font=header_font, fill=fg_color)
y += h1_h + header_spacing
draw.text((x, y), header2, font=header_font, fill=fg_color)
y += h2_h + section_spacing
# Draw row boxes with evenly spaced numbers
max_box_width = max(row_box_widths) if row_box_widths else 0
for row, box_h in zip(obs.keypad, row_box_heights):
box_left = x
box_top = y
box_right = x + max_box_width
box_bottom = y + box_h
# draw row rectangle
draw.rectangle(
[box_left, box_top, box_right, box_bottom],
fill=row_fill,
outline=row_outline,
width=2
)
# evenly spaced numbers
n = len(row)
if n > 0:
available_width = max_box_width - 2 * row_padding_xy[0]
spacing = available_width / (n + 1)
for idx, num in enumerate(row, start=1):
num_text = str(num)
num_w, num_h = _text_size(draw, num_text, body_font)
num_x = box_left + row_padding_xy[0] + spacing * idx - num_w / 2
num_y = box_top + (box_h - num_h) // 2
draw.text((num_x, num_y), num_text, font=body_font, fill=fg_color)
y = box_bottom + row_spacing
img.save(out_path, format="PNG")
def _next_run_dir(base_dir: Path) -> Path:
"""Find the next available run directory under base_dir (run_001, run_002, ...)."""
counter = 1
while True:
run_dir = base_dir / f"run_{counter:03d}"
if not run_dir.exists():
run_dir.mkdir(parents=True)
return run_dir
counter += 1
def render_sequence_to_pngs(seq: ObservationSequence, out_dir: Path) -> None:
out_dir.mkdir(parents=True, exist_ok=True)
run_dir = _next_run_dir(out_dir)
for i, obs in enumerate(seq.observations, start=1):
filename = run_dir / f"observation_{i:03d}.png"
render_observation_to_png(seq.target_passcode, obs, filename)
if __name__ == "__main__":
shuffle_classes = {
'RandomSplitShuffle': RandomSplitShuffleKeypad,
'RandomShuffle': RandomShuffleKeypad,
'SlidingSplitShuffle': SlidingSplitShuffleKeypad,
'SlidingTowerShuffle': SlidingTowerShuffleKeypad
}
parser = argparse.ArgumentParser(description="Generate and save observation sequences with optional PNG rendering.")
parser.add_argument("--number-of-keys", type=int, default=6, help="Number of keys in the keypad (default: 6)")
parser.add_argument("--properties-per-key", type=int, default=9, help="Properties per key (default: 9)")
parser.add_argument("--passcode-length", type=int, default=4, help="Length of the passcode (default: 4)")
parser.add_argument("--complexity", type=int, default=0, help="Complexity of the passcode (default: 0)")
parser.add_argument("--disparity", type=int, default=0, help="Disparity of the passcode (default: 0)")
parser.add_argument("--num-runs", type=int, default=50, help="Number of observations to generate (default: 50)")
parser.add_argument("--shuffle-type", type=str, default="SlidingTowerShuffle", choices=list(shuffle_classes.keys()),
help="Keypad shuffle type: 'RandomShuffle' or 'SlidingTowerShuffle' (default: SlidingTowerShuffle)")
parser.add_argument("--output-dir", type=str, default="./output",
help="Custom output directory for JSON and PNG files")
args = parser.parse_args()
keypad = shuffle_classes[args.shuffle_type].new_keypad(6, 9)
obs_seq = new_observation_sequence(keypad, 4, 0, 0, numb_runs=50)
shuffle_type = str(type(keypad)).lower().split('.')[-1].replace("'>", "")
output_dir = Path(args.output_dir)
save_observation_sequence_to_json(obs_seq, output_dir / "obs.json")
render_sequence_to_pngs(obs_seq, output_dir / "obs_png")

544
environment.yaml Normal file
View File

@@ -0,0 +1,544 @@
name: base
channels:
- defaults
dependencies:
- _anaconda_depends=2024.10=py312_openblas_0
- aiobotocore=2.12.3=py312hca03da5_0
- aiohappyeyeballs=2.4.3=py312hca03da5_0
- aiohttp=3.10.5=py312h80987f9_0
- aioitertools=0.7.1=pyhd3eb1b0_0
- aiosignal=1.2.0=pyhd3eb1b0_0
- alabaster=0.7.16=py312hca03da5_0
- altair=5.0.1=py312hca03da5_0
- anaconda-anon-usage=0.5.0=py312hd6b623d_100
- anaconda-catalogs=0.2.0=py312hca03da5_1
- anaconda-cli-base=0.4.1=py312hca03da5_1
- anaconda-client=1.13.0=py312hca03da5_0
- anaconda-cloud-auth=0.7.2=py312hca03da5_0
- anaconda-navigator=2.6.4=py312hca03da5_0
- anaconda-project=0.11.1=py312hca03da5_0
- annotated-types=0.6.0=py312hca03da5_0
- anyio=4.6.2=py312hca03da5_0
- aom=3.6.0=h313beb8_0
- appdirs=1.4.4=pyhd3eb1b0_0
- applaunchservices=0.3.0=py312hca03da5_0
- appnope=0.1.3=py312hca03da5_1001
- appscript=1.2.5=py312h80987f9_0
- archspec=0.2.3=pyhd3eb1b0_0
- argon2-cffi=21.3.0=pyhd3eb1b0_0
- argon2-cffi-bindings=21.2.0=py312h80987f9_0
- arrow=1.3.0=py312hca03da5_0
- arrow-cpp=16.1.0=hbc20fb2_0
- astroid=3.2.4=py312hca03da5_0
- astropy=6.1.3=py312h80987f9_0
- astropy-iers-data=0.2024.9.2.0.33.23=py312hca03da5_0
- asttokens=2.0.5=pyhd3eb1b0_0
- async-lru=2.0.4=py312hca03da5_0
- asyncssh=2.17.0=py312hca03da5_0
- atomicwrites=1.4.0=py_0
- attrs=24.2.0=py312hca03da5_0
- automat=20.2.0=py_0
- autopep8=2.0.4=pyhd3eb1b0_0
- aws-c-auth=0.6.19=h80987f9_0
- aws-c-cal=0.5.20=h80987f9_0
- aws-c-common=0.8.5=h80987f9_0
- aws-c-compression=0.2.16=h80987f9_0
- aws-c-event-stream=0.2.15=h313beb8_0
- aws-c-http=0.6.25=h80987f9_0
- aws-c-io=0.13.10=h80987f9_0
- aws-c-mqtt=0.7.13=h80987f9_0
- aws-c-s3=0.1.51=h80987f9_0
- aws-c-sdkutils=0.1.6=h80987f9_0
- aws-checksums=0.1.13=h80987f9_0
- aws-crt-cpp=0.18.16=h313beb8_0
- aws-sdk-cpp=1.10.55=h313beb8_0
- babel=2.11.0=py312hca03da5_0
- backports=1.1=pyhd3eb1b0_1
- backports.functools_lru_cache=1.6.4=pyhd3eb1b0_0
- backports.tempfile=1.0=pyhd3eb1b0_1
- backports.weakref=1.0.post1=py_1
- bcrypt=3.2.0=py312h80987f9_1
- beautifulsoup4=4.12.3=py312hca03da5_0
- binaryornot=0.4.4=pyhd3eb1b0_1
- black=24.8.0=py312hca03da5_0
- blas=1.0=openblas
- bleach=6.2.0=py312hca03da5_0
- blinker=1.6.2=py312hca03da5_0
- blosc=1.21.3=h313beb8_0
- bokeh=3.6.0=py312hca03da5_0
- boltons=23.0.0=py312hca03da5_0
- boost-cpp=1.82.0=h48ca7d4_2
- botocore=1.34.69=py312hca03da5_0
- bottleneck=1.4.2=py312ha86b861_0
- brotli=1.0.9=h80987f9_8
- brotli-bin=1.0.9=h80987f9_8
- brotli-python=1.0.9=py312h313beb8_8
- brunsli=0.1=hc377ac9_1
- bzip2=1.0.8=h80987f9_6
- c-ares=1.19.1=h80987f9_0
- c-blosc2=2.12.0=h7df6c2f_0
- ca-certificates=2024.11.26=hca03da5_0
- cachetools=5.3.3=py312hca03da5_0
- cctools=949.0.1=hc179dcd_25
- cctools_osx-arm64=949.0.1=h332cad3_25
- certifi=2024.8.30=py312hca03da5_0
- cffi=1.17.1=py312h3eb5a62_0
- cfitsio=3.470=h7f6438f_7
- chardet=4.0.0=py312hca03da5_1003
- charls=2.2.0=hc377ac9_0
- charset-normalizer=3.3.2=pyhd3eb1b0_0
- click=8.1.7=py312hca03da5_0
- cloudpickle=3.0.0=py312hca03da5_0
- colorama=0.4.6=py312hca03da5_0
- colorcet=3.1.0=py312hca03da5_0
- comm=0.2.1=py312hca03da5_0
- conda=24.11.0=py312hca03da5_0
- conda-build=24.11.2=py312hca03da5_0
- conda-content-trust=0.2.0=py312hca03da5_1
- conda-index=0.5.0=py312hca03da5_0
- conda-libmamba-solver=24.9.0=pyhd3eb1b0_0
- conda-pack=0.6.0=pyhd3eb1b0_0
- conda-package-handling=2.4.0=py312hca03da5_0
- conda-package-streaming=0.11.0=py312hca03da5_0
- conda-repo-cli=1.0.114=py312hca03da5_0
- conda-token=0.4.0=pyhd3eb1b0_0
- conda-verify=3.4.2=py_1
- constantly=23.10.4=py312hca03da5_0
- contourpy=1.3.1=py312h48ca7d4_0
- cookiecutter=2.6.0=py312hca03da5_0
- cryptography=43.0.3=py312h8026fc7_1
- cssselect=1.2.0=py312hca03da5_0
- curl=8.9.1=h02f6b3c_0
- cycler=0.11.0=pyhd3eb1b0_0
- cyrus-sasl=2.1.28=h9131b1a_1
- cytoolz=0.12.2=py312h80987f9_0
- dask=2024.8.2=py312hca03da5_0
- dask-core=2024.8.2=py312hca03da5_0
- dask-expr=1.1.13=py312hca03da5_0
- datasets=2.19.1=py312hca03da5_0
- datashader=0.16.3=py312hca03da5_0
- dav1d=1.2.1=h80987f9_0
- debugpy=1.6.7=py312h313beb8_0
- decorator=5.1.1=pyhd3eb1b0_0
- defusedxml=0.7.1=pyhd3eb1b0_0
- deprecated=1.2.13=py312hca03da5_0
- diff-match-patch=20200713=pyhd3eb1b0_0
- dill=0.3.8=py312hca03da5_0
- distributed=2024.8.2=py312hca03da5_0
- distro=1.9.0=py312hca03da5_0
- dmglib=0.9.5=py312hca03da5_0
- docstring-to-markdown=0.11=py312hca03da5_0
- docutils=0.18.1=py312hca03da5_3
- et_xmlfile=1.1.0=py312hca03da5_1
- executing=0.8.3=pyhd3eb1b0_0
- expat=2.6.3=h313beb8_0
- filelock=3.13.1=py312hca03da5_0
- flake8=7.1.1=py312hca03da5_0
- flask=3.0.3=py312hca03da5_0
- fmt=9.1.0=h48ca7d4_1
- fonttools=4.51.0=py312h80987f9_0
- freetype=2.12.1=h1192e45_0
- frozendict=2.4.2=py312hca03da5_0
- frozenlist=1.5.0=py312h80987f9_0
- fsspec=2024.3.1=py312hca03da5_0
- future=1.0.0=py312hca03da5_0
- gensim=4.3.3=py312hd77ebd4_0
- gettext=0.21.0=hbdbcc25_2
- gflags=2.2.2=h313beb8_1
- giflib=5.2.2=h80987f9_0
- gitdb=4.0.7=pyhd3eb1b0_0
- gitpython=3.1.43=py312hca03da5_0
- glib=2.78.4=h313beb8_0
- glib-tools=2.78.4=h313beb8_0
- glog=0.5.0=h313beb8_1
- gmp=6.2.1=hc377ac9_3
- greenlet=3.0.1=py312h313beb8_0
- gst-plugins-base=1.14.1=h313beb8_1
- gstreamer=1.14.1=h80987f9_1
- h11=0.14.0=py312hca03da5_0
- h5py=3.12.1=py312h8456320_0
- hdf5=1.12.1=h05c076b_3
- heapdict=1.0.1=pyhd3eb1b0_0
- holoviews=1.20.0=py312hca03da5_0
- httpcore=1.0.2=py312hca03da5_0
- httpx=0.27.0=py312hca03da5_0
- huggingface_hub=0.24.6=py312hca03da5_0
- hvplot=0.11.1=py312hca03da5_0
- hyperlink=21.0.0=pyhd3eb1b0_0
- icu=73.1=h313beb8_0
- idna=3.7=py312hca03da5_0
- imagecodecs=2023.1.23=py312h75b721f_1
- imageio=2.33.1=py312hca03da5_0
- imagesize=1.4.1=py312hca03da5_0
- imbalanced-learn=0.12.3=py312hca03da5_1
- importlib-metadata=8.5.0=py312hca03da5_0
- importlib_metadata=8.5.0=hd3eb1b0_0
- incremental=22.10.0=pyhd3eb1b0_0
- inflection=0.5.1=py312hca03da5_1
- iniconfig=1.1.1=pyhd3eb1b0_0
- intake=2.0.7=py312hca03da5_0
- intervaltree=3.1.0=pyhd3eb1b0_0
- ipykernel=6.29.5=py312hca03da5_0
- ipython=8.27.0=py312hca03da5_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- ipywidgets=7.8.1=py312hca03da5_0
- isort=5.13.2=py312hca03da5_0
- itemadapter=0.3.0=pyhd3eb1b0_0
- itemloaders=1.1.0=py312hca03da5_0
- itsdangerous=2.2.0=py312hca03da5_0
- jaraco.classes=3.2.1=pyhd3eb1b0_0
- jedi=0.19.1=py312hca03da5_0
- jellyfish=1.0.1=py312h1bd1ac0_1
- jinja2=3.1.4=py312hca03da5_1
- jmespath=1.0.1=py312hca03da5_0
- joblib=1.4.2=py312hca03da5_0
- jpeg=9e=h80987f9_3
- jq=1.7.1=h80987f9_0
- json5=0.9.25=py312hca03da5_0
- jsonpatch=1.33=py312hca03da5_1
- jsonpointer=2.1=pyhd3eb1b0_0
- jsonschema=4.23.0=py312hca03da5_0
- jsonschema-specifications=2023.7.1=py312hca03da5_0
- jupyter=1.0.0=py312hca03da5_9
- jupyter-lsp=2.2.0=py312hca03da5_0
- jupyter_client=8.6.0=py312hca03da5_0
- jupyter_console=6.6.3=py312hca03da5_1
- jupyter_core=5.7.2=py312hca03da5_0
- jupyter_events=0.10.0=py312hca03da5_0
- jupyter_server=2.14.1=py312hca03da5_0
- jupyter_server_terminals=0.4.4=py312hca03da5_1
- jupyterlab=4.2.5=py312hca03da5_0
- jupyterlab-variableinspector=3.1.0=py312hca03da5_0
- jupyterlab_pygments=0.1.2=py_0
- jupyterlab_server=2.27.3=py312hca03da5_0
- jupyterlab_widgets=1.0.0=pyhd3eb1b0_1
- jxrlib=1.1=h1a28f6b_2
- keyring=24.3.1=py312hca03da5_0
- kiwisolver=1.4.4=py312h313beb8_0
- krb5=1.20.1=hf3e1bf2_1
- lazy_loader=0.4=py312hca03da5_0
- lcms2=2.12=hba8e193_0
- ld64=530=hb29bf3f_25
- ld64_osx-arm64=530=h001ce53_25
- ldid=2.1.5=h20b2a84_3
- lerc=3.0=hc377ac9_0
- libabseil=20240116.2=cxx17_h313beb8_0
- libaec=1.0.4=hc377ac9_1
- libarchive=3.7.4=h8f13d7a_0
- libavif=0.11.1=h80987f9_0
- libboost=1.82.0=h0bc93f9_2
- libbrotlicommon=1.0.9=h80987f9_8
- libbrotlidec=1.0.9=h80987f9_8
- libbrotlienc=1.0.9=h80987f9_8
- libclang=14.0.6=default_h1b80db6_1
- libclang13=14.0.6=default_h24352ff_1
- libcurl=8.9.1=h3e2b118_0
- libcxx=14.0.6=h848a8c0_0
- libdeflate=1.17=h80987f9_1
- libedit=3.1.20230828=h80987f9_0
- libev=4.33=h1a28f6b_1
- libevent=2.1.12=h02f6b3c_1
- libffi=3.4.4=hca03da5_1
- libgfortran=5.0.0=11_3_0_hca03da5_28
- libgfortran5=11.3.0=h009349e_28
- libglib=2.78.4=h0a96307_0
- libgrpc=1.62.2=h62f6fdd_0
- libiconv=1.16=h80987f9_3
- liblief=0.12.3=h313beb8_0
- libllvm14=14.0.6=h19fdd8a_4
- libmamba=1.5.11=haeffa04_0
- libmambapy=1.5.11=py312h15e39b3_0
- libnghttp2=1.57.0=h62f6fdd_0
- libopenblas=0.3.21=h269037a_0
- libpng=1.6.39=h80987f9_0
- libpq=17.0=h02f6b3c_0
- libprotobuf=4.25.3=h514c7bf_0
- libsodium=1.0.18=h1a28f6b_0
- libsolv=0.7.24=h514c7bf_1
- libspatialindex=1.9.3=hc377ac9_0
- libssh2=1.11.1=h3e2b118_0
- libthrift=0.15.0=h73c2103_2
- libtiff=4.5.1=h313beb8_0
- libwebp-base=1.3.2=h80987f9_1
- libxml2=2.13.5=h0b34f26_0
- libxslt=1.1.41=hf4d3faa_0
- libzopfli=1.0.3=hc377ac9_0
- linkify-it-py=2.0.0=py312hca03da5_0
- llvm-openmp=14.0.6=hc6e5704_0
- llvmlite=0.43.0=py312h313beb8_0
- locket=1.0.0=py312hca03da5_0
- lxml=5.3.0=py312h1d4350b_0
- lz4=4.3.2=py312h80987f9_0
- lz4-c=1.9.4=h313beb8_1
- lzo=2.10=h1a28f6b_2
- markdown=3.4.1=py312hca03da5_0
- markdown-it-py=2.2.0=py312hca03da5_1
- markupsafe=2.1.3=py312h80987f9_0
- matplotlib=3.9.2=py312hca03da5_1
- matplotlib-base=3.9.2=py312h7ef442a_1
- matplotlib-inline=0.1.6=py312hca03da5_0
- mccabe=0.7.0=pyhd3eb1b0_0
- mdit-py-plugins=0.3.0=py312hca03da5_0
- mdurl=0.1.0=py312hca03da5_0
- menuinst=2.2.0=py312hca03da5_0
- mistune=2.0.4=py312hca03da5_0
- more-itertools=10.3.0=py312hca03da5_0
- mpc=1.1.0=h8c48613_1
- mpfr=4.0.2=h695f6f0_1
- mpmath=1.3.0=py312hca03da5_0
- msgpack-python=1.0.3=py312h48ca7d4_0
- multidict=6.1.0=py312h80987f9_0
- multipledispatch=0.6.0=py312hca03da5_0
- multiprocess=0.70.15=py312hca03da5_0
- mypy=1.11.2=py312h80987f9_0
- mypy_extensions=1.0.0=py312hca03da5_0
- mysql=8.4.0=h3a6587f_1
- navigator-updater=0.5.1=py312hca03da5_0
- nbclassic=1.1.0=py312hca03da5_0
- nbclient=0.8.0=py312hca03da5_0
- nbconvert=7.16.4=py312hca03da5_0
- nbformat=5.10.4=py312hca03da5_0
- ncurses=6.4=h313beb8_0
- nest-asyncio=1.6.0=py312hca03da5_0
- networkx=3.3=py312hca03da5_0
- nltk=3.9.1=py312hca03da5_0
- notebook=7.2.2=py312hca03da5_1
- notebook-shim=0.2.3=py312hca03da5_0
- numba=0.60.0=py312hd77ebd4_0
- numexpr=2.10.1=py312h5d9532f_0
- numpy=1.26.4=py312h7f4fdc5_0
- numpy-base=1.26.4=py312he047099_0
- numpydoc=1.7.0=py312hca03da5_0
- oniguruma=6.9.7.1=h1a28f6b_0
- openjpeg=2.5.2=h54b8e55_0
- openldap=2.6.4=he7ef289_0
- openpyxl=3.1.5=py312h80987f9_0
- openssl=3.0.15=h80987f9_0
- orc=2.0.1=h937ddfc_0
- overrides=7.4.0=py312hca03da5_0
- packaging=24.1=py312hca03da5_0
- pandas=2.2.3=py312hcf29cfe_0
- pandocfilters=1.5.0=pyhd3eb1b0_0
- panel=1.5.3=py312hca03da5_0
- param=2.1.1=py312hca03da5_0
- parsel=1.8.1=py312hca03da5_0
- parso=0.8.3=pyhd3eb1b0_0
- partd=1.4.1=py312hca03da5_0
- patch=2.7.6=h1a28f6b_1001
- pathspec=0.10.3=py312hca03da5_0
- patsy=0.5.6=py312hca03da5_0
- pcre2=10.42=hb066dcc_1
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=11.0.0=py312hfaf4e14_0
- pip=24.2=py312hca03da5_0
- pkce=1.0.3=py312hca03da5_0
- pkginfo=1.11.2=py312hca03da5_0
- platformdirs=3.10.0=py312hca03da5_0
- plotly=5.24.1=py312h989b03a_0
- pluggy=1.5.0=py312hca03da5_0
- ply=3.11=py312hca03da5_1
- prometheus_client=0.21.0=py312hca03da5_0
- prompt-toolkit=3.0.43=py312hca03da5_0
- prompt_toolkit=3.0.43=hd3eb1b0_0
- propcache=0.2.0=py312h80987f9_0
- protego=0.1.16=py_0
- protobuf=4.25.3=py312h8472c4a_0
- psutil=5.9.0=py312h80987f9_0
- ptyprocess=0.7.0=pyhd3eb1b0_2
- pure_eval=0.2.2=pyhd3eb1b0_0
- py-cpuinfo=9.0.0=py312hca03da5_0
- py-lief=0.12.3=py312h313beb8_0
- pyarrow=16.1.0=py312hd77ebd4_0
- pyasn1=0.4.8=pyhd3eb1b0_0
- pyasn1-modules=0.2.8=py_0
- pybind11-abi=5=hd3eb1b0_0
- pycodestyle=2.12.1=py312hca03da5_0
- pycosat=0.6.6=py312h80987f9_1
- pycparser=2.21=pyhd3eb1b0_0
- pyct=0.5.0=py312hca03da5_0
- pycurl=7.45.3=py312h02f6b3c_0
- pydantic=2.8.2=py312hca03da5_0
- pydantic-core=2.20.1=py312hf0e4da2_0
- pydantic-settings=2.6.1=py312hca03da5_0
- pydeck=0.8.0=py312hca03da5_2
- pydispatcher=2.0.5=py312hca03da5_3
- pydocstyle=6.3.0=py312hca03da5_0
- pyerfa=2.0.1.4=py312ha86b861_0
- pyflakes=3.2.0=py312hca03da5_0
- pygithub=2.4.0=py312hca03da5_0
- pygments=2.15.1=py312hca03da5_1
- pyjwt=2.9.0=py312hca03da5_0
- pylint=3.2.7=py312hca03da5_0
- pylint-venv=3.0.3=py312hca03da5_0
- pyls-spyder=0.4.0=pyhd3eb1b0_0
- pynacl=1.5.0=py312h80987f9_0
- pyobjc-core=10.1=py312h80987f9_0
- pyobjc-framework-cocoa=10.1=py312hb094c41_0
- pyobjc-framework-coreservices=10.1=py312hdd8dd1f_0
- pyobjc-framework-fsevents=10.1=py312hca03da5_0
- pyodbc=5.1.0=py312h313beb8_0
- pyopenssl=24.2.1=py312hca03da5_0
- pyparsing=3.2.0=py312hca03da5_0
- pyqt=5.15.10=py312h313beb8_0
- pyqt5-sip=12.13.0=py312h80987f9_0
- pyqtwebengine=5.15.10=py312h313beb8_0
- pysocks=1.7.1=py312hca03da5_0
- pytables=3.10.1=py312h905a39b_0
- pytest=7.4.4=py312hca03da5_0
- python=3.12.7=h99e199e_0
- python-dateutil=2.9.0post0=py312hca03da5_2
- python-dotenv=0.21.0=py312hca03da5_0
- python-fastjsonschema=2.20.0=py312hca03da5_0
- python-json-logger=2.0.7=py312hca03da5_0
- python-libarchive-c=5.1=pyhd3eb1b0_0
- python-lmdb=1.4.1=py312h313beb8_0
- python-lsp-black=2.0.0=py312hca03da5_0
- python-lsp-jsonrpc=1.1.2=pyhd3eb1b0_0
- python-lsp-server=1.12.0=py312h989b03a_0
- python-slugify=5.0.2=pyhd3eb1b0_0
- python-tzdata=2023.3=pyhd3eb1b0_0
- python-xxhash=2.0.2=py312h80987f9_1
- python.app=3=py312h80987f9_1
- pytoolconfig=1.2.6=py312hca03da5_0
- pytz=2024.1=py312hca03da5_0
- pyuca=1.2=py312hca03da5_1
- pyviz_comms=3.0.2=py312hca03da5_0
- pywavelets=1.7.0=py312h80987f9_0
- pyyaml=6.0.2=py312h80987f9_0
- pyzmq=25.1.2=py312h313beb8_0
- qdarkstyle=3.2.3=pyhd3eb1b0_0
- qstylizer=0.2.2=py312hca03da5_0
- qt-main=5.15.2=h0917680_11
- qt-webengine=5.15.9=h2903aaf_7
- qtawesome=1.3.1=py312hca03da5_0
- qtconsole=5.6.0=py312hca03da5_0
- qtpy=2.4.1=py312hca03da5_0
- queuelib=1.6.2=py312hca03da5_0
- re2=2022.04.01=hc377ac9_0
- readchar=4.0.5=py312hca03da5_0
- readline=8.2=h1a28f6b_0
- referencing=0.30.2=py312hca03da5_0
- regex=2024.9.11=py312h80987f9_0
- reproc=14.2.4=h313beb8_2
- reproc-cpp=14.2.4=h313beb8_2
- requests=2.32.3=py312hca03da5_1
- requests-file=1.5.1=pyhd3eb1b0_0
- requests-toolbelt=1.0.0=py312hca03da5_0
- responses=0.13.3=pyhd3eb1b0_0
- rfc3339-validator=0.1.4=py312hca03da5_0
- rfc3986-validator=0.1.1=py312hca03da5_0
- rich=13.9.4=py312hca03da5_0
- rope=1.12.0=py312hca03da5_0
- rpds-py=0.10.6=py312h2aea54e_1
- rtree=1.0.1=py312hca03da5_0
- ruamel.yaml=0.18.6=py312h80987f9_0
- ruamel.yaml.clib=0.2.8=py312h80987f9_0
- ruamel_yaml=0.17.21=py312h80987f9_0
- s3fs=2024.3.1=py312hca03da5_0
- safetensors=0.4.5=py312h7805bc0_1
- scikit-image=0.24.0=py312hd77ebd4_0
- scikit-learn=1.5.1=py312hd77ebd4_0
- scipy=1.13.1=py312ha409365_0
- scrapy=2.12.0=py312hca03da5_0
- seaborn=0.13.2=py312hca03da5_0
- semver=3.0.2=py312hca03da5_0
- send2trash=1.8.2=py312hca03da5_0
- service_identity=18.1.0=pyhd3eb1b0_1
- setuptools=75.1.0=py312hca03da5_0
- shellingham=1.5.0=py312hca03da5_0
- sip=6.7.12=py312h313beb8_0
- six=1.16.0=pyhd3eb1b0_1
- smart_open=5.2.1=py312hca03da5_0
- smmap=4.0.0=pyhd3eb1b0_0
- snappy=1.2.1=h313beb8_0
- sniffio=1.3.0=py312hca03da5_0
- snowballstemmer=2.2.0=pyhd3eb1b0_0
- sortedcontainers=2.4.0=pyhd3eb1b0_0
- soupsieve=2.5=py312hca03da5_0
- sphinx=7.3.7=py312hca03da5_0
- sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0
- sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0
- sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0
- sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0
- sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0
- sphinxcontrib-serializinghtml=1.1.10=py312hca03da5_0
- spyder=6.0.1=py312hca03da5_0
- spyder-kernels=3.0.0=py312h989b03a_0
- sqlalchemy=2.0.34=py312hbe2cdee_0
- sqlite=3.45.3=h80987f9_0
- stack_data=0.2.0=pyhd3eb1b0_0
- statsmodels=0.14.2=py312ha86b861_0
- streamlit=1.40.1=py312hca03da5_0
- superqt=0.6.7=py312h989b03a_0
- sympy=1.13.2=py312hca03da5_0
- tabulate=0.9.0=py312hca03da5_0
- tapi=1100.0.11=h8754e6a_1
- tbb=2021.8.0=h48ca7d4_0
- tblib=1.7.0=pyhd3eb1b0_0
- tenacity=9.0.0=py312hca03da5_0
- terminado=0.17.1=py312hca03da5_0
- text-unidecode=1.3=pyhd3eb1b0_0
- textdistance=4.6.3=py312h989b03a_0
- threadpoolctl=3.5.0=py312h989b03a_0
- three-merge=0.1.1=pyhd3eb1b0_0
- tifffile=2023.4.12=py312hca03da5_0
- tinycss2=1.2.1=py312hca03da5_0
- tk=8.6.14=h6ba3021_0
- tldextract=5.1.2=py312hca03da5_0
- tokenizers=0.20.1=py312he2d9c3e_1
- toml=0.10.2=pyhd3eb1b0_0
- tomli=2.0.1=py312hca03da5_1
- tomlkit=0.13.2=py312hca03da5_0
- toolz=0.12.0=py312hca03da5_0
- tornado=6.4.1=py312h80987f9_0
- tqdm=4.66.5=py312h989b03a_0
- traitlets=5.14.3=py312hca03da5_0
- transformers=4.45.2=py312hca03da5_0
- truststore=0.8.0=py312hca03da5_0
- twisted=23.10.0=py312hca03da5_0
- typer=0.9.0=py312hca03da5_0
- typing-extensions=4.11.0=py312hca03da5_0
- typing_extensions=4.11.0=py312hca03da5_0
- tzdata=2024b=h04d1e81_0
- uc-micro-py=1.0.1=py312hca03da5_0
- ujson=5.10.0=py312h313beb8_0
- unicodedata2=15.1.0=py312h80987f9_0
- unidecode=1.3.8=py312hca03da5_0
- unixodbc=2.3.11=h1a28f6b_0
- urllib3=2.2.3=py312hca03da5_0
- utf8proc=2.6.1=h80987f9_1
- w3lib=2.1.2=py312hca03da5_0
- watchdog=4.0.1=py312h80987f9_0
- wcwidth=0.2.5=pyhd3eb1b0_0
- webencodings=0.5.1=py312hca03da5_2
- websocket-client=1.8.0=py312hca03da5_0
- werkzeug=3.0.6=py312hca03da5_0
- whatthepatch=1.0.2=py312hca03da5_0
- wheel=0.44.0=py312hca03da5_0
- widgetsnbextension=3.6.6=py312hca03da5_0
- wrapt=1.14.1=py312h80987f9_0
- wurlitzer=3.0.2=py312hca03da5_0
- xarray=2023.6.0=py312hca03da5_0
- xlwings=0.32.1=py312hca03da5_0
- xxhash=0.8.0=h1a28f6b_3
- xyzservices=2022.9.0=py312hca03da5_1
- xz=5.4.6=h80987f9_1
- yaml=0.2.5=h1a28f6b_0
- yaml-cpp=0.8.0=h313beb8_1
- yapf=0.40.2=py312hca03da5_0
- yarl=1.18.0=py312h80987f9_0
- zeromq=4.3.5=h313beb8_0
- zfp=1.0.0=h313beb8_0
- zict=3.0.0=py312hca03da5_0
- zipp=3.21.0=py312hca03da5_0
- zlib=1.2.13=h18a0788_1
- zlib-ng=2.0.7=h80987f9_0
- zope=1.0=py312hca03da5_1
- zope.interface=7.1.1=py312h80987f9_0
- zstandard=0.23.0=py312h1a4646a_1
- zstd=1.5.6=hfb09047_0
- pip:
- svgpathtools==1.7.0
- svgwrite==1.4.3
prefix: /opt/homebrew/anaconda3

View File

@@ -1,125 +0,0 @@
name: evilnkode
channels:
- defaults
dependencies:
- anyio=4.6.2=py312hca03da5_0
- appnope=0.1.3=py312hca03da5_1001
- argon2-cffi=21.3.0=pyhd3eb1b0_0
- argon2-cffi-bindings=21.2.0=py312h80987f9_0
- asttokens=2.0.5=pyhd3eb1b0_0
- async-lru=2.0.4=py312hca03da5_0
- attrs=24.2.0=py312hca03da5_0
- babel=2.11.0=py312hca03da5_0
- beautifulsoup4=4.12.3=py312hca03da5_0
- bleach=6.2.0=py312hca03da5_0
- brotli-python=1.0.9=py312h313beb8_8
- bzip2=1.0.8=h80987f9_6
- ca-certificates=2024.12.31=hca03da5_0
- certifi=2024.12.14=py312hca03da5_0
- cffi=1.17.1=py312h3eb5a62_0
- charset-normalizer=3.3.2=pyhd3eb1b0_0
- comm=0.2.1=py312hca03da5_0
- debugpy=1.6.7=py312h313beb8_0
- decorator=5.1.1=pyhd3eb1b0_0
- defusedxml=0.7.1=pyhd3eb1b0_0
- executing=0.8.3=pyhd3eb1b0_0
- expat=2.6.3=h313beb8_0
- h11=0.14.0=py312hca03da5_0
- httpcore=1.0.2=py312hca03da5_0
- httpx=0.27.0=py312hca03da5_0
- idna=3.7=py312hca03da5_0
- ipykernel=6.29.5=py312hca03da5_0
- ipython=8.27.0=py312hca03da5_0
- jedi=0.19.1=py312hca03da5_0
- jinja2=3.1.4=py312hca03da5_1
- json5=0.9.25=py312hca03da5_0
- jsonschema=4.23.0=py312hca03da5_0
- jsonschema-specifications=2023.7.1=py312hca03da5_0
- jupyter-lsp=2.2.0=py312hca03da5_0
- jupyter_client=8.6.0=py312hca03da5_0
- jupyter_core=5.7.2=py312hca03da5_0
- jupyter_events=0.10.0=py312hca03da5_0
- jupyter_server=2.14.1=py312hca03da5_0
- jupyter_server_terminals=0.4.4=py312hca03da5_1
- jupyterlab=4.2.5=py312hca03da5_0
- jupyterlab_pygments=0.1.2=py_0
- jupyterlab_server=2.27.3=py312hca03da5_0
- libcxx=14.0.6=h848a8c0_0
- libffi=3.4.4=hca03da5_1
- libsodium=1.0.18=h1a28f6b_0
- markupsafe=2.1.3=py312h80987f9_0
- matplotlib-inline=0.1.6=py312hca03da5_0
- mistune=2.0.4=py312hca03da5_0
- nbclient=0.8.0=py312hca03da5_0
- nbconvert=7.16.4=py312hca03da5_0
- nbformat=5.10.4=py312hca03da5_0
- ncurses=6.4=h313beb8_0
- nest-asyncio=1.6.0=py312hca03da5_0
- notebook=7.2.2=py312hca03da5_1
- notebook-shim=0.2.3=py312hca03da5_0
- openssl=3.0.15=h80987f9_0
- overrides=7.4.0=py312hca03da5_0
- packaging=24.1=py312hca03da5_0
- pandocfilters=1.5.0=pyhd3eb1b0_0
- parso=0.8.3=pyhd3eb1b0_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pip=24.2=py312hca03da5_0
- platformdirs=3.10.0=py312hca03da5_0
- prometheus_client=0.21.0=py312hca03da5_0
- prompt-toolkit=3.0.43=py312hca03da5_0
- prompt_toolkit=3.0.43=hd3eb1b0_0
- psutil=5.9.0=py312h80987f9_0
- ptyprocess=0.7.0=pyhd3eb1b0_2
- pure_eval=0.2.2=pyhd3eb1b0_0
- pycparser=2.21=pyhd3eb1b0_0
- pygments=2.15.1=py312hca03da5_1
- pysocks=1.7.1=py312hca03da5_0
- python=3.12.7=h99e199e_0
- python-dateutil=2.9.0post0=py312hca03da5_2
- python-fastjsonschema=2.20.0=py312hca03da5_0
- python-json-logger=2.0.7=py312hca03da5_0
- pytz=2024.1=py312hca03da5_0
- pyyaml=6.0.2=py312h80987f9_0
- pyzmq=25.1.2=py312h313beb8_0
- readline=8.2=h1a28f6b_0
- referencing=0.30.2=py312hca03da5_0
- requests=2.32.3=py312hca03da5_1
- rfc3339-validator=0.1.4=py312hca03da5_0
- rfc3986-validator=0.1.1=py312hca03da5_0
- rpds-py=0.10.6=py312h2aea54e_1
- send2trash=1.8.2=py312hca03da5_0
- setuptools=75.1.0=py312hca03da5_0
- six=1.16.0=pyhd3eb1b0_1
- sniffio=1.3.0=py312hca03da5_0
- soupsieve=2.5=py312hca03da5_0
- sqlite=3.45.3=h80987f9_0
- stack_data=0.2.0=pyhd3eb1b0_0
- terminado=0.17.1=py312hca03da5_0
- tinycss2=1.2.1=py312hca03da5_0
- tk=8.6.14=h6ba3021_0
- tornado=6.4.1=py312h80987f9_0
- traitlets=5.14.3=py312hca03da5_0
- typing-extensions=4.11.0=py312hca03da5_0
- typing_extensions=4.11.0=py312hca03da5_0
- tzdata=2024b=h04d1e81_0
- urllib3=2.2.3=py312hca03da5_0
- wcwidth=0.2.5=pyhd3eb1b0_0
- webencodings=0.5.1=py312hca03da5_2
- websocket-client=1.8.0=py312hca03da5_0
- wheel=0.44.0=py312hca03da5_0
- xz=5.4.6=h80987f9_1
- yaml=0.2.5=h1a28f6b_0
- zeromq=4.3.5=h313beb8_0
- zlib=1.2.13=h18a0788_1
- pip:
- contourpy==1.3.1
- cycler==0.12.1
- fonttools==4.55.3
- iniconfig==2.0.0
- kiwisolver==1.4.7
- matplotlib==3.9.3
- numpy==2.1.3
- pillow==11.0.0
- pluggy==1.5.0
- pyparsing==3.2.0
- pytest==8.3.4

File diff suppressed because one or more lines are too long

199
notebooks/evilnkode.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@@ -1,84 +1,19 @@
from src.evilkode import Observation, Evilkode
from src.keypad import Keypad
import random
from tqdm import tqdm
from src.evilnkode import EvilNKode
from dataclasses import dataclass
from statistics import mean, variance
from enum import Enum
from src.utils import observations, passcode_generator
from src.keypad.keypad import BaseKeypad
from pathlib import Path
import pickle
@dataclass
class Benchmark:
mean: int
variance: int
runs: list[int]
class ShuffleTypes(Enum):
FULL_SHUFFLE = "FULL_SHUFFLE"
SPLIT_SHUFFLE = "SPLIT_SHUFFLE"
def observations(number_of_keys, properties_per_key, passcode_len, complexity: int, disparity: int, shuffle_type: ShuffleTypes):
k = number_of_keys
p = properties_per_key
n = passcode_len
passcode = passcode_generator(k, p, n, complexity, disparity)
keypad = Keypad.new_keypad(k, p)
def obs_gen():
for _ in range(100): # finite number of yields
yield Observation(
keypad=keypad.keypad.copy(),
key_selection=keypad.key_entry(target_passcode=passcode)
)
match shuffle_type:
case ShuffleTypes.FULL_SHUFFLE:
keypad.full_shuffle()
case ShuffleTypes.SPLIT_SHUFFLE:
keypad.split_shuffle()
case _:
raise Exception(f"no shuffle type {shuffle_type}")
return obs_gen()
def passcode_generator(k: int, p: int, n: int, c: int, d: int) -> list[int]:
assert n >= c
assert p*k >= c
assert n >= d
assert p >= d
passcode_prop = []
passcode_set = []
valid_choices = {i for i in range(k*p)}
repeat_set = n-d
repeat_prop = n-c
prop_added = set()
set_added = set()
for _ in range(n):
prop = random.choice(list(valid_choices))
prop_set = prop//p
passcode_prop.append(prop)
passcode_set.append(prop_set)
if prop in prop_added:
repeat_prop -= 1
if prop_set in set_added:
repeat_set -= 1
prop_added.add(prop)
set_added.add(prop_set)
if repeat_prop <= 0:
valid_choices -= prop_added
if repeat_set <= 0:
for el in valid_choices.copy():
if el // p in set_added:
valid_choices.remove(el)
return passcode_prop
iterations_to_break: list[int]
iterations_to_replay: list[int]
def shuffle_benchmark(
def benchmark(
number_of_keys: int,
properties_per_key: int,
passcode_len: int,
@@ -86,84 +21,44 @@ def shuffle_benchmark(
run_count: int,
complexity: int,
disparity: int,
shuffle_type: ShuffleTypes,
file_path: str = '../output',
keypad: BaseKeypad,
file_path: Path = '../output',
overwrite: bool = False
) -> Benchmark:
file_name = f"{shuffle_type.name.lower()}-{number_of_keys}-{properties_per_key}-{passcode_len}-{max_tries_before_lockout}-{complexity}-{disparity}-{run_count}.txt"
full_path = Path(file_path) / file_name
shuffle_type = str(type(keypad)).lower().split('.')[-1].replace("'>", "")
file_name = f"{shuffle_type}-{number_of_keys}-{properties_per_key}-{passcode_len}-{max_tries_before_lockout}-{complexity}-{disparity}-{run_count}.pkl"
full_path = Path(file_path) / "benchmark" / file_name
if not overwrite and full_path.exists():
print(f"file exists {file_path}")
print(f"File exists: {full_path}")
with open(full_path, "rb") as fp:
return pickle.load(fp)
with open(full_path, "r") as fp:
runs = fp.readline()
runs = runs.split(',')
runs = [int(i) for i in runs]
return Benchmark(
mean=mean(runs),
variance=variance(runs),
runs=runs
)
runs = []
for _ in range(run_count):
evilkode = Evilkode(
iterations_to_break = []
iterations_to_replay = []
for _ in tqdm(range(run_count)):
passcode = passcode_generator(number_of_keys, properties_per_key, passcode_len, complexity, disparity)
evilnkode = EvilNKode(
observations=observations(
number_of_keys=number_of_keys,
properties_per_key=properties_per_key,
passcode_len=passcode_len,
complexity=complexity,
disparity=disparity,
shuffle_type=shuffle_type,
target_passcode=passcode,
keypad=keypad,
),
number_of_keys=number_of_keys,
properties_per_key=properties_per_key,
passcode_len=passcode_len,
max_tries_before_lockout=max_tries_before_lockout,
)
evilout = evilkode.run()
runs.append(evilout.iterations)
evilout = evilnkode.run()
iterations_to_break.append(evilout.iterations_to_break)
iterations_to_replay.append(evilout.iterations_to_replay)
full_path.parent.mkdir(parents=True, exist_ok=True)
with open(full_path, "w") as fp:
fp.write(",".join([str(i) for i in runs])),
return Benchmark(
mean=mean(runs),
variance=variance(runs),
runs=runs
benchmark_result = Benchmark(
iterations_to_break=iterations_to_break,
iterations_to_replay=iterations_to_replay
)
if file_path:
full_path.parent.mkdir(parents=True, exist_ok=True)
with open(full_path, "wb") as fp:
pickle.dump(benchmark_result, fp)
def full_shuffle_benchmark(
number_of_keys: int,
properties_per_key: int,
passcode_len: int,
max_tries_before_lockout: int,
run_count: int,
complexity: int,
disparity: int,
) -> Benchmark:
runs = []
for _ in range(run_count):
evilkode = Evilkode(
observations=observations(
number_of_keys=number_of_keys,
properties_per_key=properties_per_key,
passcode_len=passcode_len,
complexity=complexity,
disparity=disparity,
shuffle_type=ShuffleTypes.FULL_SHUFFLE,
),
number_of_keys=number_of_keys,
properties_per_key=properties_per_key,
passcode_len=passcode_len,
max_tries_before_lockout=max_tries_before_lockout,
)
evilout = evilkode.run()
runs.append(evilout.iterations)
return Benchmark(
mean=mean(runs),
variance=variance(runs),
runs=runs
)
return benchmark_result

View File

@@ -12,19 +12,19 @@ class Observation:
def property_list(self) -> list[set[int]]:
return [set(self.keypad[idx]) for idx in self.key_selection]
@property
def flat_keypad(self) -> list[int]:
return [num for row in self.keypad for num in row]
@dataclass
class EvilOutput:
possible_nkodes: list[list[int]]
iterations: int
@property
def number_of_possible_nkode(self):
return math.prod([len(el) for el in self.possible_nkodes])
iterations_to_break: int
iterations_to_replay: int
@dataclass
class Evilkode:
class EvilNKode:
observations: Iterator[Observation]
passcode_len: int
number_of_keys: int
@@ -32,17 +32,31 @@ class Evilkode:
max_tries_before_lockout: int = 5
possible_nkode = None
def initialize(self):
possible_values = set(range(self.number_of_keys * self.properties_per_key))
self.possible_nkode = [possible_values.copy() for _ in range(self.passcode_len)]
def run(self) -> EvilOutput:
self.initialize()
iterations_to_replay = None
for idx, obs in enumerate(self.observations):
if iterations_to_replay is None:
replay_possibilities = self.replay_attack(obs)
if replay_possibilities <= self.max_tries_before_lockout:
iterations_to_replay = idx + 1
if math.prod([len(el) for el in self.possible_nkode]) <= self.max_tries_before_lockout:
return EvilOutput(possible_nkodes=[list(el) for el in self.possible_nkode], iterations=idx+1)
assert iterations_to_replay <= idx + 1
return EvilOutput(
# possible_nkodes=[list(el) for el in self.possible_nkode],
iterations_to_break=idx + 1,
iterations_to_replay=iterations_to_replay
)
for jdx, props in enumerate(obs.property_list):
self.possible_nkode[jdx] = props.intersection(self.possible_nkode[jdx])
raise Exception("error in Evilkode, observations stopped yielding")
def replay_attack(self, obs: Observation) -> int:
possible_combos = 1
for el in self.possible_nkode:
possible_combos *= len({obs.flat_keypad.index(el2) // self.properties_per_key for el2 in el})
return possible_combos

View File

@@ -1,83 +0,0 @@
from dataclasses import dataclass
import numpy as np
@dataclass
class Keypad:
keypad: np.ndarray
k: int # number of keys
p: int # properties per key
keypad_cache: list #
max_cache_size: int = 100
@staticmethod
def new_keypad(k: int, p: int):
total_properties = k * p
array = np.arange(total_properties)
# Reshape into a 3x4 matrix
keypad = array.reshape(k, p)
set_view = keypad.T
for set_idx in set_view:
np.random.shuffle(set_idx)
return Keypad(keypad=set_view.T, k=k, p=p, keypad_cache=[])
def split_shuffle(self):
"""
This is a modified split shuffle.
It doesn't shuffle the keys only the properties in the keys.
Shuffling the keys makes it hard for people to guess an nKode not a machine.
This split shuffle includes a cache to prevent the same configuration from being used.
This cache is not in any other implementation.
Testing suggests it's not necessary.
Getting the same keypad twice over 100 shuffles is very unlikely.
"""
shuffled_sets = self._shuffle()
# Sort the shuffled sets by the first column
sorted_set = shuffled_sets[np.argsort(shuffled_sets[:, 0])]
while str(sorted_set) in self.keypad_cache:
# continue shuffling until we get a unique configuration
shuffled_sets = self._shuffle()
sorted_set = shuffled_sets[np.argsort(shuffled_sets[:, 0])]
self.keypad_cache.append(str(sorted_set))
self.keypad_cache = self.keypad_cache[:self.max_cache_size]
self.keypad = shuffled_sets
def _shuffle(self) -> np.ndarray:
column_permutation = np.random.permutation(self.p)
column_subset = column_permutation[:self.p // 2]
perm_indices = np.random.permutation(self.k)
shuffled_sets = self.keypad.copy()
shuffled_sets[:, column_subset] = shuffled_sets[perm_indices, :][:, column_subset]
return shuffled_sets
def full_shuffle(self):
shuffled_matrix = np.array([np.random.permutation(row) for row in self.keypad.T])
self.keypad = shuffled_matrix.T
def key_entry(self, target_passcode: list[int]) -> list[int]:
"""
Given target_values, return the row indices they are in.
Assert that each element is >= 0 and < self.k * self.p.
"""
# Convert the list to a NumPy array for vectorized checks
vals = np.array(target_passcode)
# Validate that each value is within the valid range
if np.any((vals < 0) | (vals >= self.k * self.p)):
raise ValueError("One or more values are out of the valid range.")
# Flatten the keypad to a 1D array
flat = self.keypad.flatten()
# Create an inverse mapping from value -> row index
inv_index = np.empty(self.k * self.p, dtype=int)
# Each value v is at position i in 'flat', so row = i // p
for i, v in enumerate(flat):
inv_index[v] = i // self.p
# Use the inverse mapping to get row indices for all target values
return inv_index[vals].tolist()

0
src/keypad/__init__.py Normal file
View File

123
src/keypad/keypad.py Normal file
View File

@@ -0,0 +1,123 @@
from dataclasses import dataclass
import numpy as np
from src.keypad.tower_shuffle import TowerShuffle
from abc import ABC, abstractmethod
from typing import Self
class BaseKeypad(ABC):
keypad: np.ndarray
k: int # number of keys
p: int # properties per key
@classmethod
def _build_keypad(cls, k: int, p: int) -> np.ndarray:
rng = np.random.default_rng()
total = k * p
array = np.arange(total)
keypad = array.reshape(k, p)
set_view = keypad.T.copy()
for set_idx in set_view:
rng.shuffle(set_idx)
return set_view.T
@classmethod
@abstractmethod
def new_keypad(cls, k: int, p: int) -> Self:
raise NotImplementedError
def key_entry(self, target_passcode: list[int]) -> list[int]:
vals = np.array(target_passcode)
if np.any((vals < 0) | (vals >= self.k * self.p)):
raise ValueError("One or more values are out of the valid range.")
flat = self.keypad.flatten()
inv_index = np.empty(self.k * self.p, dtype=int)
for i, v in enumerate(flat):
inv_index[v] = i // self.p
return inv_index[vals].tolist()
@abstractmethod
def shuffle(self):
pass
def keypad_mat(self) -> list[list[int]]:
return [el.tolist() for el in self.keypad]
@dataclass
class SlidingTowerShuffleKeypad(BaseKeypad):
keypad: np.ndarray
k: int # number of keys
p: int # properties per key
tower_shuffle: TowerShuffle
@classmethod
def new_keypad(cls, k: int, p: int) -> Self:
kp = cls._build_keypad(k, p)
return cls(keypad=kp, k=k, p=p, tower_shuffle=TowerShuffle.new(p))
def shuffle(self):
selected_positions = self.tower_shuffle.left_tower.tolist()
shift = np.random.randint(1, self.k) # random int in [1, k-1]
new_key_idxs = np.roll(np.arange(self.k), shift)
shuffled_sets = self.keypad.copy()
shuffled_sets[:, selected_positions] = shuffled_sets[new_key_idxs, :][:, selected_positions]
self.keypad = shuffled_sets
self.tower_shuffle.shuffle()
@dataclass
class RandomShuffleKeypad(BaseKeypad):
keypad: np.ndarray
k: int # number of keys
p: int # properties per key
@classmethod
def new_keypad(cls, k: int, p: int) -> Self:
kp = cls._build_keypad(k, p)
return cls(keypad=kp, k=k, p=p)
def shuffle(self):
shuffled_matrix = np.array([np.random.permutation(row) for row in self.keypad.T])
self.keypad = shuffled_matrix.T
@dataclass
class RandomSplitShuffleKeypad(BaseKeypad):
keypad: np.ndarray
k: int # number of keys
p: int # properties per key
@classmethod
def new_keypad(cls, k: int, p: int) -> Self:
kp = cls._build_keypad(k, p)
return cls(keypad=kp, k=k, p=p)
def shuffle(self):
column_permutation = np.random.permutation(self.p)
column_subset = column_permutation[:self.p // 2]
new_key_idxs = np.random.permutation(self.k)
shuffled_sets = self.keypad.copy()
shuffled_sets[:, column_subset] = shuffled_sets[new_key_idxs, :][:, column_subset]
self.keypad = shuffled_sets
@dataclass
class SlidingSplitShuffleKeypad(BaseKeypad):
keypad: np.ndarray
k: int # number of keys
p: int # properties per key
@classmethod
def new_keypad(cls, k: int, p: int) -> Self:
kp = cls._build_keypad(k, p)
return cls(keypad=kp, k=k, p=p)
def shuffle(self):
selected_positions = np.random.permutation(self.p)
column_subset = selected_positions[:self.p // 2]
shift = np.random.randint(1, self.k)
new_key_idxs = np.roll(np.arange(self.k), shift)
shuffled_sets = self.keypad.copy()
shuffled_sets[:, column_subset] = shuffled_sets[new_key_idxs, :][:, column_subset]
self.keypad = shuffled_sets

View File

@@ -0,0 +1,80 @@
from dataclasses import dataclass
import numpy as np
@dataclass
class Tower:
floors: list[np.ndarray]
def split_tower(self) -> tuple[np.ndarray, np.ndarray]:
discard = np.array([], dtype=int)
keep = np.array([], dtype=int)
balance = self.balance()
for idx, floor in enumerate(self.floors):
div = len(floor)//2 + balance[idx]
floor_shuffle = np.random.permutation(len(floor))
keep = np.concatenate((keep, floor[floor_shuffle[:div]]))
discard = np.concatenate((discard, floor[floor_shuffle[div:]]))
diff = len(discard) - len(keep)
assert 0 <= diff <= 1
return keep, discard
def balance(self) -> list[int]:
odd_floors = np.array([idx for idx, el in enumerate(self.floors) if len(el) & 1])
balance = np.zeros(len(self.floors), dtype=int)
if len(odd_floors) == 0:
return balance.tolist()
shuffle = np.random.permutation(len(odd_floors))[:len(odd_floors) // 2]
odd_floors = odd_floors[shuffle]
balance[odd_floors] = 1
return balance.tolist()
def update_tower(self, keep: np.ndarray, other_discard: np.ndarray):
new_floors = []
for floor in self.floors:
new_floor = np.intersect1d(floor, keep)
if len(new_floor):
new_floors.append(new_floor)
self.floors = new_floors
self.floors.insert(0, other_discard)
def __str__(self):
str_val = ""
floor_numb = [i for i in reversed(range(len(self.floors)))]
for idx, val in enumerate(reversed(self.floors)):
str_val += f"Floor {floor_numb[idx]}: {val.tolist()}\n"
return str_val
def tolist(self) -> list[int]:
tower = []
for floor in self.floors:
tower.extend(floor.tolist())
return tower
@dataclass
class TowerShuffle:
total_positions: int
left_tower: Tower
right_tower: Tower
@classmethod
def new(cls, total_pos:int):
assert total_pos >= 3
rand_pos = np.random.permutation(total_pos)
return TowerShuffle(
total_positions=total_pos,
left_tower=Tower(floors=[rand_pos[:total_pos//2]]),
right_tower=Tower(floors=[rand_pos[total_pos//2:]]),
)
def shuffle(self):
left_keep, left_discard = self.left_tower.split_tower()
right_keep, right_discard = self.right_tower.split_tower()
self.left_tower.update_tower(left_keep, right_discard)
self.right_tower.update_tower(right_keep, left_discard)
def __str__(self):
return f"""Left Tower:
{self.left_tower}
Right Tower:
{self.right_tower}"""

View File

@@ -1,7 +1,66 @@
import random
from math import factorial, comb
from src.evilnkode import Observation
from src.keypad.keypad import BaseKeypad
from typing import Iterator
def total_valid_nkode_states(k: int, p: int) -> int:
return factorial(k) ** (p-1)
return factorial(k) ** (p - 1)
def total_shuffle_states(k: int, p: int) -> int:
return comb((p-1), (p-1) // 2) * factorial(k)
return comb((p - 1), (p - 1) // 2) * factorial(k)
def observations(target_passcode: list[int], keypad: BaseKeypad, number_of_observations: int = 100) -> Iterator[
Observation]:
def obs():
for _ in range(number_of_observations):
yield Observation(
keypad=keypad.keypad_mat(),
key_selection=keypad.key_entry(target_passcode=target_passcode)
)
keypad.shuffle()
return obs()
def passcode_generator(k: int, p: int, n: int, c: int, d: int) -> list[int]:
assert n >= c
assert p * k >= c
assert n >= d
assert p >= d
passcode_prop = []
passcode_set = []
valid_choices = {i for i in range(k * p)}
repeat_set = n - d
repeat_prop = n - c
prop_added = set()
set_added = set()
for _ in range(n):
prop = random.choice(list(valid_choices))
prop_set = prop // p
passcode_prop.append(prop)
passcode_set.append(prop_set)
if prop in prop_added:
repeat_prop -= 1
if prop_set in set_added:
repeat_set -= 1
prop_added.add(prop)
set_added.add(prop_set)
if repeat_prop <= 0:
valid_choices -= prop_added
if repeat_set <= 0:
for el in valid_choices.copy():
if el // p in set_added:
valid_choices.remove(el)
return passcode_prop

View File

@@ -1,6 +1,14 @@
from src.benchmark import passcode_generator
from src.utils import passcode_generator
from src.keypad.keypad import (
RandomShuffleKeypad,
RandomSplitShuffleKeypad,
SlidingTowerShuffleKeypad,
SlidingSplitShuffleKeypad
)
from src.benchmark import benchmark
import pytest
@pytest.mark.parametrize(
"k, p, n, c, d, runs",
[
@@ -10,6 +18,29 @@ import pytest
def test_passcode_generator(k, p, n, c, d, runs):
for _ in range(runs):
passcode = passcode_generator(k=k, p=p, n=n, c=c, d=d)
passcode_sets = [el//p for el in passcode]
assert c <= len(set(passcode))
passcode_sets = [el // p for el in passcode]
assert c <= len(set(passcode))
assert d <= len(set(passcode_sets))
@pytest.mark.parametrize(
"number_of_keys,properties_per_key,passcode_len,max_tries_before_lockout,complexity,disparity,run_count,keypad",
[
(6, 8, 4, 5, 4, 4, 100, RandomShuffleKeypad),
(6, 8, 4, 5, 4, 4, 100, RandomSplitShuffleKeypad),
(6, 8, 4, 5, 4, 4, 100, SlidingSplitShuffleKeypad),
(6, 8, 4, 5, 4, 4, 100, SlidingTowerShuffleKeypad),
]
)
def test_benchmark(number_of_keys, properties_per_key, passcode_len, max_tries_before_lockout, complexity, disparity,
run_count, keypad):
benchmark(
number_of_keys=number_of_keys,
properties_per_key=properties_per_key,
passcode_len=passcode_len,
max_tries_before_lockout=max_tries_before_lockout,
run_count=run_count,
complexity=complexity,
disparity=disparity,
keypad=keypad.new_keypad(number_of_keys, properties_per_key)
)

View File

@@ -1,45 +1,34 @@
import random
import pytest
from src.evilkode import Evilkode, Observation
from src.keypad import Keypad
from src.evilnkode import EvilNKode
from src.keypad.keypad import (
RandomShuffleKeypad,
)
from src.utils import observations
@pytest.fixture
def observations(number_of_keys, properties_per_key, passcode_len):
k = number_of_keys
p = properties_per_key
n = passcode_len
nkode = [random.randint(0, k*p-1) for _ in range(n)]
keypad = Keypad.new_keypad(k, p)
def obs_gen():
for _ in range(100): # finite number of yields
yield Observation(
keypad=keypad.keypad.copy(),
key_selection=keypad.key_entry(target_passcode=nkode)
)
keypad.split_shuffle()
return obs_gen()
def passcode(number_of_keys, properties_per_key, passcode_len):
return [random.randint(0, number_of_keys * properties_per_key - 1) for _ in range(passcode_len)]
@pytest.mark.parametrize(
"number_of_keys, properties_per_key, passcode_len",
[
(5, 3, 4), # Test case 1
(5, 4, 4), # Test case 1
(10, 5, 6), # Test case 2
(8, 4, 5), # Test case 3
(8, 4, 5), # Test case 3
]
)
def test_evilkode(number_of_keys, properties_per_key, passcode_len, observations):
evilkode = Evilkode(
observations=observations,
def test_evilkode(number_of_keys, properties_per_key, passcode_len, passcode):
keypad = RandomShuffleKeypad.new_keypad(number_of_keys, properties_per_key)
obs = observations(passcode, keypad)
evilkode = EvilNKode(
observations=obs,
number_of_keys=number_of_keys,
properties_per_key=properties_per_key,
passcode_len=passcode_len,
)
evilout = evilkode.run()
assert evilout.iterations > 1
assert evilout.iterations_to_break > 1

View File

@@ -1,31 +1,34 @@
import pytest
import numpy as np
from src.keypad.keypad import (
RandomSplitShuffleKeypad,
RandomShuffleKeypad,
SlidingSplitShuffleKeypad,
SlidingTowerShuffleKeypad,
)
from src.keypad import Keypad
def test_keypad():
keypad = Keypad(
def test_key_entry():
keypad = RandomShuffleKeypad(
keypad=np.array([
[8, 9, 10, 11],
[0, 5, 2, 3],
[4, 1, 6,7]
]), k= 3, p=4, keypad_cache=[])
[4, 1, 6, 7]
]), k=3, p=4)
assert keypad.key_entry([8, 5, 6, 11]) == [0, 1, 2, 0]
assert keypad.key_entry([8, 5, 6, 11]) == [0,1,2,0]
def test_split_shuffle():
p = 4 # properties_per_key
k = 3 # number_of_keys
keypad = Keypad.new_keypad(k, p)
@pytest.mark.parametrize(
"keypad_type, number_of_keys, properties_per_key",
[
(RandomShuffleKeypad, 3, 4),
(RandomSplitShuffleKeypad, 3, 4),
(SlidingTowerShuffleKeypad, 3, 4),
(SlidingSplitShuffleKeypad, 3, 4),
]
)
def test_keypad_shuffle(keypad_type, number_of_keys, properties_per_key):
keypad = keypad_type.new_keypad(number_of_keys, properties_per_key)
print(keypad.keypad)
keypad.split_shuffle()
keypad.shuffle()
print(keypad.keypad)
def test_full_shuffle():
p = 4 # properties_per_key
k = 3 # number_of_keys
keypad = Keypad.new_keypad(k, p)
print(keypad.keypad)
keypad.full_shuffle()
print(keypad.keypad)

View File

@@ -0,0 +1,8 @@
from src.keypad.tower_shuffle import TowerShuffle
def test_tower_shuffle():
tower = TowerShuffle.new(9)
print(tower)
for _ in range(100):
tower.shuffle()
print(tower)