Files
pynkode/src/user_cipher.py

122 lines
4.9 KiB
Python

import base64
import hashlib
from dataclasses import dataclass
import bcrypt
import numpy as np
from src.models import EncipheredNKode, KeypadSize
from src.customer_cipher import CustomerCipher
@dataclass
class UserCipher:
property_key: np.ndarray
combined_position_key: np.ndarray
pass_key: np.ndarray
mask_key: np.ndarray
max_nkode_len: int
@classmethod
def create(cls, keypad_size: KeypadSize, customer_pos_key: np.ndarray, max_nkode_len: int) -> 'UserCipher':
if len(customer_pos_key) != keypad_size.props_per_key:
raise ValueError("Invalid position values")
user_pos_key = np.random.choice(2**16,size=keypad_size.props_per_key, replace=False)
return UserCipher(
property_key=np.random.choice(2 ** 16, size=keypad_size.total_props, replace=False),
pass_key=np.random.choice(2 ** 16, size=max_nkode_len, replace=False),
mask_key=np.random.choice(2**16, size=max_nkode_len, replace=False),
combined_position_key=user_pos_key ^ customer_pos_key,
max_nkode_len=max_nkode_len
)
def pad_user_mask(self, user_mask: np.ndarray, pos_vals: np.ndarray) -> np.ndarray:
# TODO: replace with new method
if len(user_mask) >= self.max_nkode_len:
raise ValueError("User encoded_mask is too long")
padding_size = self.max_nkode_len - len(user_mask)
padding = np.random.choice(pos_vals, size=padding_size, replace=True).astype(np.uint16)
return np.concatenate([user_mask, padding])
@staticmethod
def encode_base64_str(data: np.ndarray) -> str:
return base64.b64encode( b"".join([int(num).to_bytes(2, byteorder='big') for num in data])).decode("utf-8")
@staticmethod
def decode_base64_str(data: str) -> np.ndarray:
byte_data = base64.b64decode(data)
int_list = []
for i in range(0, len(byte_data), 2):
int_val = int.from_bytes(byte_data[i:i + 2], byteorder='big')
int_list.append(int_val)
return np.array(int_list, dtype=np.uint16)
def encipher_nkode(
self,
passcode_prop_idx: list[int],
customer_cipher: CustomerCipher
) -> EncipheredNKode:
mask = self.encipher_mask(passcode_prop_idx, customer_cipher)
code = self.hash_nkode(passcode_prop_idx, customer_cipher)
return EncipheredNKode(
code=code,
mask=mask
)
def hash_nkode(
self,
passcode_prop_idx: list[int],
customer_prop: CustomerCipher,
) -> str:
salt = bcrypt.gensalt(rounds=12)
passcode_bytes = self.prehash_passcode(passcode_prop_idx, customer_prop)
passcode_digest = base64.b64encode(hashlib.sha256(passcode_bytes).digest())
hashed_data = bcrypt.hashpw(passcode_digest, salt)
return hashed_data.decode("utf-8")
def compare_nkode(
self,
passcode_prop_idx: list[int],
customer_prop: CustomerCipher,
hashed_passcode: str
) -> bool:
passcode_bytes = self.prehash_passcode(passcode_prop_idx, customer_prop)
passcode_digest = base64.b64encode(hashlib.sha256(passcode_bytes).digest())
return bcrypt.checkpw(passcode_digest, hashed_passcode.encode('utf-8'))
def prehash_passcode(
self,
passcode_prop_idx: list[int],
customer_prop: CustomerCipher
) -> bytes:
passcode_len = len(passcode_prop_idx)
passcode_cipher = self.pass_key.copy()
passcode_cipher[:passcode_len] = (
passcode_cipher[:passcode_len] ^
self.property_key[passcode_prop_idx] ^
customer_prop.property_key[passcode_prop_idx]
)
return passcode_cipher.astype(np.uint16).tobytes()
def encipher_mask(
self,
passcode_prop_idx: list[int],
customer_cipher: CustomerCipher
) -> str:
pos_idxs = customer_cipher.get_passcode_position_indices_padded(passcode_prop_idx, len(self.mask_key))
ordered_pos_key = self.combined_position_key[pos_idxs]
ordered_customer_pos_key = customer_cipher.position_key[pos_idxs]
mask = ordered_pos_key ^ ordered_customer_pos_key ^ self.mask_key
encoded_mask = self.encode_base64_str(mask)
return encoded_mask
def decipher_mask(self, encoded_mask: str, customer_pos_key: np.ndarray, passcode_len: int) -> list[int]:
mask = self.decode_base64_str(encoded_mask)
# user_pos_key ordered by the user's nkode and padded to be length max_nkode_len
ordered_user_pos_key = mask ^ self.mask_key
user_pos_key = customer_pos_key ^ self.combined_position_key
passcode_position = []
for position_val in ordered_user_pos_key[:passcode_len]:
position_idx = np.where(user_pos_key == position_val)[0][0]
passcode_position.append(int(customer_pos_key[position_idx]))
return passcode_position