36 lines
1.4 KiB
Python
36 lines
1.4 KiB
Python
import pytest
|
|
from src.user_keypad import UserKeypad
|
|
from src.models import KeypadSize
|
|
|
|
|
|
@pytest.fixture()
|
|
def user_keypad():
|
|
return UserKeypad.create(keypad_size=KeypadSize(props_per_key=7, numb_of_keys=10))
|
|
|
|
|
|
def test_dispersion(user_keypad):
|
|
for _ in range(10000):
|
|
pre_dispersion_graph = user_keypad.attribute_adjacency_graph()
|
|
user_keypad.disperse_keypad()
|
|
post_dispersion_graph = user_keypad.attribute_adjacency_graph()
|
|
for attr, adj_graph in pre_dispersion_graph.items():
|
|
assert (adj_graph.isdisjoint(post_dispersion_graph[attr]))
|
|
|
|
|
|
def test_shuffle_attrs(user_keypad):
|
|
"""there's no easy way to test this. At some point we'll have to run this code thousands of time to see if we get
|
|
expected statistical outcomes like:
|
|
- every attribute gets to every key with a uniform distribution
|
|
- every attribute is adjacent to every other attribute with uniform distribution
|
|
- the order in which the customer_cipher move from key to key is random (i.e. the distance traveled is uniform)
|
|
"""
|
|
pre_shuffle_keypad = user_keypad.keypad
|
|
user_keypad.partial_keypad_shuffle()
|
|
post_shuffle_keypad = user_keypad.keypad
|
|
assert (not all(
|
|
post_shuffle_keypad[idx] == pre_shuffle_keypad[idx] for idx in range(len(post_shuffle_keypad))
|
|
))
|
|
assert (not all(
|
|
post_shuffle_keypad[idx] != pre_shuffle_keypad[idx] for idx in range(len(post_shuffle_keypad))
|
|
))
|