from pydantic import BaseModel from src.utils import list_to_matrix, secure_fisher_yates_shuffle, matrix_to_list class UserInterface(BaseModel): interface_index: list[int] numb_sets: int numb_keys: int @classmethod def new_interface(cls, numb_sets: int, numb_keys: int): return UserInterface( interface_index=secure_fisher_yates_shuffle(list(range(numb_sets*numb_keys))), numb_sets=numb_sets, numb_keys=numb_keys, ) def disperse_interface(self): user_interface_matrix = list_to_matrix(self.interface_index, self.numb_sets) shuffled_keys = secure_fisher_yates_shuffle(user_interface_matrix) dispersed_interface = self._random_attribute_rotation(shuffled_keys) self.interface_index = matrix_to_list(dispersed_interface) @staticmethod def matrix_transpose(interface: list[list[int]]) -> list[list[int]]: return [list(row) for row in zip(*interface)] def shuffle_interface(self): pass def _random_attribute_rotation(self, user_interface: list[list[int]]) -> list[list[int]]: attr_rotation = secure_fisher_yates_shuffle(list(range(self.numb_keys)))[:self.numb_sets] transposed_user_interface = self.matrix_transpose(user_interface) assert (len(attr_rotation) == len(transposed_user_interface)) for idx, attr_set in enumerate(transposed_user_interface): rotation = attr_rotation[idx] transposed_user_interface[idx] = attr_set[rotation:] + attr_set[:rotation] return self.matrix_transpose(transposed_user_interface) def attribute_adjacency_graph(self) -> dict[int, set[int]]: user_interface_keypad = list_to_matrix(self.interface_index, self.numb_sets) graph = {} for key in user_interface_keypad: for attr in key: graph[attr] = set(key) graph[attr].remove(attr) return graph