# README
Play around with the code in /notebooks
## Customer Creation
Before creating a user, a customer generates random properties and set
values. The customers manage users. They define an nKode policy, keypad's dimensions,
properties/sets in the keypad, and the frequency of property renewal.
### nKode Policy and Keypad Size
An nKode policy defines:
- the maximum length of a user's nKode
- the minimum length of a user's nKode
- the number of unique set values in a user's nKode
- the number of unique values in a user's nKode
- the number of bytes in an property and set
The keypad size defines:
- the number of keys in the keypad displayed to the user
- properties per key
To be [dispersion](nkode_concepts.md/#dispersion-resistant-keypad) resistant, the number of properties must be greater than the number of keys.
```
api = NKodeAPI()
policy = NKodePolicy(
max_nkode_len=10,
min_nkode_len=4,
distinct_sets=0,
distinct_properties=4,
byte_len=2
)
keypad_size = KeypadSize(
numb_of_keys = 5,
props_per_key = 6 # aka number of sets
)
customer_id = api.create_new_customer(keypad_size, policy)
customer = api.customers[customer_id]
```
### Customer properties and Sets
A customer has users and defines the properties and set values for all its users.
Since our customer has 5 keys and 6 properties per key,
this gives a customer keypad of 30 distinct properties and 6 distinct property sets.
Each property belongs to one of the 6 sets. Each property and set value is a unique 2-byte integer in this example.
```
set_vals = customer.cipher.set_key
Customer Sets: [51397 49224 50087 24444 43554 21522]
```
```
prop_vals = customer.cipher.prop_key
keypad_view(prop_vals, keypad_size.props_per_key)
Customer properties:
[65030 40058 49729 42519 32475 21731]
[19446 3351 17075 17586 20753 15754]
[19712 56685 43602 30750 54931 27419]
[40397 10398 13477 26037 17943 47642]
[58359 15284 53370 4343 16407 46898]
```
properties organized by set:
```
prop_set_view = matrix_transpose(prop_keypad_view)
set_property_dict = dict(zip(set_vals, prop_set_view))
Set to property Map:
51397 : [65030 19446 19712 40397 58359]
49224 : [40058 3351 56685 10398 15284]
50087 : [49729 17075 43602 13477 53370]
24444 : [42519 17586 30750 26037 4343]
43554 : [32475 20753 54931 17943 16407]
21522 : [21731 15754 27419 47642 46898]
```
## User Signup
Now that we have a customer, we can create users. To create a new user:
1. Generate a random keypad
2. The user sets their nKode and sends their selection to the server
3. The user confirms their nKode. If the user's nKode matches the policy, the server creates the user.
### Random keypad Generation
The user's keypad must be dispersable so the server can determine the user's nkode.
The server randomly drops property sets until
the number of properties equals the number of keys, making the keypad dispersable.
In our case, the server randomly drops 1 property set.
to give us a 5 X 5 keypad with possible index values ranging from 0-29.
Each value in the keypad is the index value of a customer property.
The user never learns what their "real" property is. They do not see the index value representing their nKode or
the customer server-side value.
```
session_id, signup_keypad = api.generate_index_keypad(customer_id)
signup_keypad_keypad = list_to_matrix(signup_keypad, keypad_size.props_per_key)
Signup Keypad:
Key 1: [19 7 25 1 13]
Key 2: [18 6 24 0 12]
Key 3: [21 9 27 3 15]
Key 4: [23 11 29 5 17]
Key 5: [20 8 26 2 14]
```
### Set nKode
The user identifies properties in the keypad they want in their nkode. Each property has an index value.
Below, the user has selected `[19, 7, 25, 1]`. These index values can be represented by anything in the GUI.
The only requirement is that the GUI properties be associated with the same index every time the user logs in.
If users want to change anything about their keypad, they must also change their nkode.
```
username = test_user
user_passcode = [19, 7, 25, 1]
selected_keys_set = select_keys_with_passcode_values(user_passcode, signup_keypad, keypad_size.props_per_key)
Selected Keys
[0, 0, 0, 0]
```
The user's passcode server side properties are:
```
server_side_prop = [customer.cipher.prop_key[idx] for idx in user_passcode]
User Passcode Server-side properties: [np.int64(10398), np.int64(3351), np.int64(15284), np.int64(40058)]
```
### Confirm nKode
The user submits the set keypad to the server and receives the _confirm keypad_ as a response.
The user finds their nKode again.
```
confirm_keypad = api.set_nkode(username, customer_id, selected_keys_set, session_id)
keypad_view(confirm_keypad, keypad_size.numb_of_keys)
selected_keys_confirm = select_keys_with_passcode_values(user_passcode, confirm_keypad, keypad_size.numb_of_keys)
Confirm Keypad:
Key 1: [20 7 27 5 12]
Key 2: [23 9 26 0 13]
Key 3: [18 8 29 1 15]
Key 4: [19 11 24 3 14]
Key 5: [21 6 25 2 17]
Selected Keys:
[3, 0, 4, 2]
```
The user submits their confirmation key selection and the user is created
```
success = api.confirm_nkode(username, customer_id, selected_keys_confirm, session_id)
```
### Passcode Enciphering, Hashing, and Salting
When a new user creates an nKode, the server caches its set and confirms the keypad and the user's key selection.
On the last api.confirm_nkode, the server:
1. Deduces the user's properties
2. Validates the Passcode against the nKodePolicy
3. Creates new User Cipher Keys
4. Enciphers the user's mask
5. Enciphers, salts, and hashes the user's passcode
Steps 1-2 are straightforward. For a better idea of how they work, see pyNKode.
#### User Cipher Keys
##### User Cipher Keys Data Structure
```
set_key = generate_random_nonrepeating_list(keypad_size.props_per_key, max_numb=2**(8*numb_of_bytes))
set_key = xor_lists(set_key, customer_prop.set_vals)
UserCipherKeys(
prop_key=generate_random_nonrepeating_list(keypad_size.props_per_key * keypad_size.numb_of_keys, max_numb=2**(8*numb_of_bytes)),
pass_key=generate_random_nonrepeating_list(max_nkode_len, max_numb=2**(8*numb_of_bytes)),
mask_key=generate_random_nonrepeating_list(max_nkode_len, max_numb=2**(8*numb_of_bytes)),
set_key=set_key,
salt=bcrypt.gensalt(),
max_nkode_len=max_nkode_len
)
```
##### User Cipher Keys Values
```
user_cipher = UserCipherKeys(
prop_key = [ 2923 16019 14458 50197 31207 7212 56686 44981 2641 64112 13044 29822
1902 22608 40919 35763 49353 20507 18363 34108 32269 6440 21357 37870
60382 18170 45147 13683 20896 12198],
pass_key = [31251 55189 60990 1342 51754 25296 19081 956 41188 43289],
mask_key = [54532 41537 22695 64404 28419 7322 24742 54924 2951 57084],
set_key = [ 3824 27422 49987 58720 10692 60061],
salt = b'$2b$12$iLYVBzbu9DVSg7S.ZBzB..',
max_nkode_len = 10
)
```
The method UserCipherKeys.encipher_nkode secures a user's nKode in the database. This method is called in api.confirm_nkode
```
class EncipheredNKode(BaseModel):
code: str
mask: str
```
#### Mask Enciphering
Recall:
- set_key_i = (set_rand_numb_i ^ set_val_i)
- mask_key_i = mask_rand_numb_i
- padded_passcode_server_set_i = set_val_i
- len(set_key) == len(mask_key) == (padded_passcode_server_set) == max_nkode_len == 10
where i is the index
- mask_i = mask_key_i ^ padded_passcode_server_set_i ^ set_key_i
- mask_i = mask_rand_num_i ^ set_val_i ^ set_rand_numb_i ^ set_val_i
- mask_i = mask_rand_num_i ^ set_rand_numb_i # set_val_i is cancelled out
```
passcode = [19, 7, 25, 1]
passcode_server_prop = [customer.cipher.prop_key[idx] for idx in passcode]
passcode_server_set = [customer.cipher.get_prop_set_val(prop) for prop in passcode_server_prop]
Passcode Set Vals: [np.int64(10398), np.int64(3351), np.int64(15284), np.int64(40058)]
Passcode prop Vals: [49224, 49224, 49224, 49224]
```
```
padded_passcode_server_set = user_cipher.pad_user_mask(passcode_server_set, customer.nkode_policy.max_nkode_len)
set_idx = [customer.cipher.get_set_index(set_val) for set_val in padded_passcode_server_set]
mask_set_keys = [user_cipher.set_key[idx] for idx in set_idx]
ciphered_mask = xor_lists(mask_set_keys, padded_passcode_server_set)
ciphered_mask = xor_lists(ciphered_mask, user_cipher.mask_key)
mask = user_cipher.encode_base64_str(ciphered_mask)
Mask: c6kE7P4KXTm3d3KmDprj8dPzBog=
```
#### Passcode Enciphering and Hashing
- ciphered_customer_prop = prop_key ^ customer_prop
- ciphered_passcode_i = pass_key_i ^ ciphered_customer_prop_i
- code = hash(ciphered_passcode, salt)
```
ciphered_customer_props = xor_lists(customer.cipher.prop_key, user_cipher.prop_key)
passcode_ciphered_props = [ciphered_customer_props[idx] for idx in passcode]
pad_len = customer.nkode_policy.max_nkode_len - passcode_len
passcode_ciphered_props.extend([0 for _ in range(pad_len)])
ciphered_code = xor_lists(passcode_ciphered_props, user_cipher.pass_key)
passcode_bytes = int_array_to_bytes(ciphered_code)
passcode_digest = base64.b64encode(hashlib.sha256(passcode_bytes).digest())
hashed_data = bcrypt.hashpw(passcode_digest, user_cipher.salt)
code = hashed_data.decode("utf-8")
Code: $2b$12$iLYVBzbu9DVSg7S.ZBzB..eoFhCtiWBtfjXNLULtODYBH8Epva1pC
```
## User Login
To login, a user:
1. Gets login keypad
2. Submits key entry
### Get Login keypad
The client requests the user's login keypad.
```
login_keypad = api.get_login_keypad(username, customer_id)
keypad_view(login_keypad, keypad_size.props_per_key)
```
The server returns a randomly shuffled keypad. Learn more about how the [User keypad Shuffle](nkode_concepts.md/#user-keypad-shuffle) works
```
Login keypad Keypad View:
Key 1: [18 19 20 21 22 23]
Key 2: [ 6 7 8 9 10 11]
Key 3: [24 25 26 27 28 29]
Key 4: [0 1 2 3 4 5]
Key 5: [12 13 14 15 16 17]
```
Recall the user's passcode is `user_passcode = [19, 7, 25, 1]` so the user selects keys ` selected_keys_login = [0, 1, 2, 3]`
```
success = api.login(customer_id, username, selected_keys_login)
```
### Validate Login Key Entry
- decipher user mask and recover nkode set values
- get presumed property from key selection and set values
- encipher, salt, and hash presumed property values and compare them to the users hashed code
#### Decipher Mask
Recall:
- set_key_i = (set_key_rand_numb_i ^ set_val_i)
- mask_i = mask_key_rand_num_i ^ set_key_rand_numb_i
Recover nKode set values:
- decode mask from base64 to int
- deciphered_mask = mask ^ mask_key
- deciphered_mask_i = set_key_rand_numb # mask_key_rand_num_i is cancelled out
- set_key_rand_component = set_key ^ set_values
- deduce the set value
```
user = customer.users[username]
user_cipher = user.user_cipher
user_mask = user.enciphered_passcode.mask
decoded_mask = user_cipher.decode_base64_str(user_mask)
deciphered_mask = xor_lists(decoded_mask, user_cipher.mask_key)
set_key_rand_component = xor_lists(set_vals, user_cipher.set_key)
passcode_sets = []
for set_cipher in deciphered_mask[:passcode_len]:
set_idx = set_key_rand_component.index(set_cipher)
passcode_sets.append(set_vals[set_idx])
Passcode Sets: [49224, 49224, 49224, 49224]
```
### Get Presumed properties
```
set_vals_idx = [customer.cipher.get_set_index(set_val) for set_val in passcode_sets]
presumed_selected_properties_idx = []
for idx in range(passcode_len):
key_numb = selected_keys_login[idx]
set_idx = set_vals_idx[idx]
selected_prop_idx = customer.users[username].user_keypad.get_prop_idx_by_keynumb_setidx(key_numb, set_idx)
presumed_selected_properties_idx.append(selected_prop_idx)
Presumped Passcode: [19, 7, 25, 1]
Recall User Passcode: [19, 7, 25, 1]
```
### Compare Enciphered Passcodes
```
enciphered_nkode = user_cipher.encipher_salt_hash_code(presumed_selected_properties_idx, customer.cipher)
```
If `enciphered_nkode == user.enciphered_passcode.code`, the user's key selection is valid, and the login is successful.
## Renew properties
properties renew is invoked with the renew_properties method: `api.renew_properties(customer_id)`
The renew properties process has three steps:
1. Renew Customer properties
2. Renew User Keys
3. Refresh User on Login
When the customer calls the `renew_properties` method, the method replaces the customer's properties and set values. All its users go through an intermediate
renewal step. The users fully renew after their first successful login. This first login refreshes their keys, salt, and hash with new values.
### Customer Renew
Old Customer properties and set values are cached and copied to variables before renewal.
```
old_sets = customer.cipher.set_key
Customer Sets: [51397 49224 50087 24444 43554 21522]
```
```
old_prop = customer.cipher.prop_key
Customer properties:
[65030 40058 49729 42519 32475 21731]
[19446 3351 17075 17586 20753 15754]
[19712 56685 43602 30750 54931 27419]
[40397 10398 13477 26037 17943 47642]
[58359 15284 53370 4343 16407 46898]
```
After the renewal, the customer properties and sets are new randomly generated values.
```
api.renew_properties(customer_id)
set_vals = customer.cipher.set_key
Customer Sets: [ 7754 52659 44415 3961 61872 57312]
```
```
prop_vals = customer.cipher.prop_key
Customer properties:
[57881 51596 44681 30104 33018 30596]
[35764 62538 21274 10697 11311 42560]
[ 4979 33517 18509 55230 26674 24108]
[63335 41237 52341 30975 12398 7267]
[53495 52030 41547 59730 36417 31547]
```
### Renew User
During the renewal, each user goes through a temporary transition period.
```
props_xor = xor_lists(new_props, old_props)
sets_xor = xor_lists(new_sets, old_sets)
for user in customer.users.values():
user.renew = True
user.user_cipher.set_key = xor_lists(user.user_cipher.set_key, sets_xor)
user.user_cipher.prop_key = xor_lists(user.user_cipher.prop_key, props_xor)
```
##### User prop Key
The user's prop key was a randomly generated list of length `numb_of_keys * prop_per_key`.
Now each value in the prop key is `prop_key_i = old_prop_key_i ^ new_prop_i ^ old_prop_i`.
Recall in the login process, `ciphered_customer_props = prop_key ^ customer_prop`.
Since the customer_prop is now the new value, it gets canceled out, leaving:
```
new_prop_key = old_prop_key ^ old_prop ^ new_prop
ciphered_customer_props = new_prop_key ^ new_prop
ciphered_customer_props = old_prop_key ^ old_prop # since new_prop cancel out
```
Using the new customer properties, we can validate the user's login attempt with the same hash.
##### User Set Key
The user's set key was a randomly generated list of length `prop_per_key` xor `customer_set_vals`.
The `old_set_vals` have been replaced with the new `new_set_vals`. The deciphering process described above
remains the same.
### User Refresh
Once the user has a successful login, they get a new salt and cipher keys, and their `enciphered_passcode` is recomputed
with the new values.
```
user.user_cipher = UserCipherKeys.new(
customer.cipher.keypad_size,
customer.cipher.set_key,
user.user_cipher.max_nkode_len
)
user.enciphered_passcode = user.user_cipher.encipher_nkode(presumed_selected_properties_idx, customer.cipher)
user.renew = False
```