numpy refactor

This commit is contained in:
2025-03-13 04:40:45 -05:00
parent facd9ee318
commit f6bf731186
12 changed files with 261 additions and 140 deletions

View File

@@ -1,13 +1,13 @@
import numpy as np
from dataclasses import dataclass
from typing import ClassVar
from src.models import KeypadSize
from src.utils import generate_random_nonrepeating_list
@dataclass
class CustomerCipher:
prop_key: list[int]
set_key: list[int]
prop_key: np.ndarray
set_key: np.ndarray
keypad_size: KeypadSize
MAX_KEYS: ClassVar[int] = 256
MAX_PROP_PER_KEY: ClassVar[int] = 256
@@ -24,23 +24,28 @@ class CustomerCipher:
def create(cls, keypad_size: KeypadSize) -> 'CustomerCipher':
if keypad_size.numb_of_keys > cls.MAX_KEYS or keypad_size.props_per_key > cls.MAX_PROP_PER_KEY:
raise ValueError(f"Keys and properties per key must not exceed {cls.MAX_KEYS}")
# Using numpy to generate non-repeating random integers
prop_key = np.random.choice(2 ** 16, size=keypad_size.numb_of_props, replace=False)
set_key = np.random.choice(2 ** 16, size=keypad_size.props_per_key, replace=False)
return cls(
prop_key=generate_random_nonrepeating_list(keypad_size.numb_of_props),
set_key=generate_random_nonrepeating_list(keypad_size.props_per_key),
prop_key=prop_key,
set_key=set_key,
keypad_size=keypad_size,
)
def renew(self):
self.prop_key = generate_random_nonrepeating_list(self.keypad_size.numb_of_props)
self.set_key = generate_random_nonrepeating_list(self.keypad_size.props_per_key)
self.prop_key = np.random.choice(2 ** 16, size=self.keypad_size.numb_of_props, replace=False)
self.set_key = np.random.choice(2 ** 16, size=self.keypad_size.props_per_key, replace=False)
def get_prop_set_val(self, prop: int) -> int:
assert (prop in self.prop_key)
prop_idx = self.prop_key.index(prop)
assert np.isin(prop, self.prop_key)
prop_idx = np.where(self.prop_key == prop)[0][0]
set_idx = prop_idx % self.keypad_size.props_per_key
return self.set_key[set_idx]
return int(self.set_key[set_idx])
def get_set_index(self, set_val: int) -> int:
if set_val not in self.set_key:
if not np.isin(set_val, self.set_key):
raise ValueError(f"Set value {set_val} not found in set values")
return self.set_key.index(set_val)
return int(np.where(self.set_key == set_val)[0][0])