numpy refactor
This commit is contained in:
@@ -1,9 +1,9 @@
|
||||
from dataclasses import dataclass
|
||||
from uuid import UUID
|
||||
import numpy as np
|
||||
from src.customer_cipher import CustomerCipher
|
||||
from src.models import NKodePolicy
|
||||
from src.user import User
|
||||
from src.utils import xor_lists
|
||||
|
||||
@dataclass
|
||||
class Customer:
|
||||
@@ -12,7 +12,7 @@ class Customer:
|
||||
cipher: CustomerCipher
|
||||
users: dict[str, User]
|
||||
|
||||
# TODO: validate policy and keypad size don't conflict
|
||||
# TODO: validate policy and keypad_list size don't conflict
|
||||
|
||||
def add_new_user(self, user: User):
|
||||
if user.username in self.users:
|
||||
@@ -56,8 +56,8 @@ class Customer:
|
||||
new_attrs = self.cipher.prop_key
|
||||
new_sets = self.cipher.set_key
|
||||
|
||||
attrs_xor = xor_lists(new_attrs, old_attrs)
|
||||
set_xor = xor_lists(new_sets, old_sets)
|
||||
attrs_xor = np.bitwise_xor(new_attrs, old_attrs)
|
||||
set_xor = np.bitwise_xor(new_sets, old_sets)
|
||||
for user in self.users.values():
|
||||
user.renew_keys(set_xor, attrs_xor)
|
||||
self.users[user.username] = user
|
||||
@@ -66,7 +66,7 @@ class Customer:
|
||||
def valid_new_nkode(self, passcode_attr_idx: list[int]) -> bool:
|
||||
nkode_len = len(passcode_attr_idx)
|
||||
passcode_set_values = [
|
||||
self.cipher.get_prop_set_val(self.cipher.prop_key[attr_idx]) for attr_idx in passcode_attr_idx
|
||||
self.cipher.get_prop_set_val(int(self.cipher.prop_key[attr_idx])) for attr_idx in passcode_attr_idx
|
||||
]
|
||||
distinct_sets = len(set(passcode_set_values))
|
||||
distinct_attributes = len(set(passcode_attr_idx))
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import numpy as np
|
||||
from dataclasses import dataclass
|
||||
from typing import ClassVar
|
||||
from src.models import KeypadSize
|
||||
from src.utils import generate_random_nonrepeating_list
|
||||
|
||||
|
||||
@dataclass
|
||||
class CustomerCipher:
|
||||
prop_key: list[int]
|
||||
set_key: list[int]
|
||||
prop_key: np.ndarray
|
||||
set_key: np.ndarray
|
||||
keypad_size: KeypadSize
|
||||
MAX_KEYS: ClassVar[int] = 256
|
||||
MAX_PROP_PER_KEY: ClassVar[int] = 256
|
||||
@@ -24,23 +24,28 @@ class CustomerCipher:
|
||||
def create(cls, keypad_size: KeypadSize) -> 'CustomerCipher':
|
||||
if keypad_size.numb_of_keys > cls.MAX_KEYS or keypad_size.props_per_key > cls.MAX_PROP_PER_KEY:
|
||||
raise ValueError(f"Keys and properties per key must not exceed {cls.MAX_KEYS}")
|
||||
|
||||
# Using numpy to generate non-repeating random integers
|
||||
prop_key = np.random.choice(2 ** 16, size=keypad_size.numb_of_props, replace=False)
|
||||
set_key = np.random.choice(2 ** 16, size=keypad_size.props_per_key, replace=False)
|
||||
|
||||
return cls(
|
||||
prop_key=generate_random_nonrepeating_list(keypad_size.numb_of_props),
|
||||
set_key=generate_random_nonrepeating_list(keypad_size.props_per_key),
|
||||
prop_key=prop_key,
|
||||
set_key=set_key,
|
||||
keypad_size=keypad_size,
|
||||
)
|
||||
|
||||
def renew(self):
|
||||
self.prop_key = generate_random_nonrepeating_list(self.keypad_size.numb_of_props)
|
||||
self.set_key = generate_random_nonrepeating_list(self.keypad_size.props_per_key)
|
||||
self.prop_key = np.random.choice(2 ** 16, size=self.keypad_size.numb_of_props, replace=False)
|
||||
self.set_key = np.random.choice(2 ** 16, size=self.keypad_size.props_per_key, replace=False)
|
||||
|
||||
def get_prop_set_val(self, prop: int) -> int:
|
||||
assert (prop in self.prop_key)
|
||||
prop_idx = self.prop_key.index(prop)
|
||||
assert np.isin(prop, self.prop_key)
|
||||
prop_idx = np.where(self.prop_key == prop)[0][0]
|
||||
set_idx = prop_idx % self.keypad_size.props_per_key
|
||||
return self.set_key[set_idx]
|
||||
return int(self.set_key[set_idx])
|
||||
|
||||
def get_set_index(self, set_val: int) -> int:
|
||||
if set_val not in self.set_key:
|
||||
if not np.isin(set_val, self.set_key):
|
||||
raise ValueError(f"Set value {set_val} not found in set values")
|
||||
return self.set_key.index(set_val)
|
||||
return int(np.where(self.set_key == set_val)[0][0])
|
||||
@@ -1,6 +1,5 @@
|
||||
from dataclasses import dataclass, field
|
||||
from uuid import UUID, uuid4
|
||||
from typing import Dict, List, Tuple
|
||||
from src.customer import Customer
|
||||
from src.models import NKodePolicy, KeypadSize
|
||||
from src.user import User
|
||||
@@ -8,12 +7,13 @@ from src.user_cipher import UserCipher
|
||||
from src.user_signup_session import UserSignupSession
|
||||
from src.user_keypad import UserKeypad
|
||||
from src.customer_cipher import CustomerCipher
|
||||
import numpy as np
|
||||
|
||||
|
||||
@dataclass
|
||||
class NKodeAPI:
|
||||
customers: Dict[UUID, Customer] = field(default_factory=dict)
|
||||
signup_sessions: Dict[UUID, UserSignupSession] = field(default_factory=dict)
|
||||
customers: dict[UUID, Customer] = field(default_factory=dict)
|
||||
signup_sessions: dict[UUID, UserSignupSession] = field(default_factory=dict)
|
||||
|
||||
def create_new_customer(self, keypad_size: KeypadSize, nkode_policy: NKodePolicy) -> UUID:
|
||||
new_customer = Customer(
|
||||
@@ -25,7 +25,7 @@ class NKodeAPI:
|
||||
self.customers[new_customer.customer_id] = new_customer
|
||||
return new_customer.customer_id
|
||||
|
||||
def generate_signup_keypad(self, customer_id: UUID) -> Tuple[UUID, List[int]]:
|
||||
def generate_signup_keypad(self, customer_id: UUID) -> tuple[UUID, np.ndarray]:
|
||||
if customer_id not in self.customers.keys():
|
||||
raise ValueError(f"Customer with ID '{customer_id}' does not exist")
|
||||
customer = self.customers[customer_id]
|
||||
@@ -45,9 +45,9 @@ class NKodeAPI:
|
||||
self,
|
||||
username: str,
|
||||
customer_id: UUID,
|
||||
key_selection: List[int],
|
||||
key_selection: list[int],
|
||||
session_id: UUID
|
||||
) -> List[int]:
|
||||
) -> np.ndarray:
|
||||
if customer_id not in self.customers.keys():
|
||||
raise ValueError(f"Customer ID {customer_id} not found")
|
||||
customer = self.customers[customer_id]
|
||||
@@ -62,7 +62,7 @@ class NKodeAPI:
|
||||
self,
|
||||
username: str,
|
||||
customer_id: UUID,
|
||||
confirm_key_entry: List[int],
|
||||
confirm_key_entry: list[int],
|
||||
session_id: UUID
|
||||
) -> bool:
|
||||
if session_id not in self.signup_sessions.keys():
|
||||
@@ -90,7 +90,7 @@ class NKodeAPI:
|
||||
del self.signup_sessions[session_id]
|
||||
return True
|
||||
|
||||
def get_login_keypad(self, username: str, customer_id: UUID) -> List[int]:
|
||||
def get_login_keypad(self, username: str, customer_id: UUID) -> np.ndarray:
|
||||
if customer_id not in self.customers.keys():
|
||||
raise ValueError("Customer ID not found")
|
||||
customer = self.customers[customer_id]
|
||||
@@ -98,9 +98,10 @@ class NKodeAPI:
|
||||
raise ValueError("Username not found")
|
||||
user = customer.users[username]
|
||||
user.user_keypad.partial_keypad_shuffle()
|
||||
# TODO: implement split_keypad_shuffle()
|
||||
return user.user_keypad.keypad
|
||||
|
||||
def login(self, customer_id: UUID, username: str, key_selection: List[int]) -> bool:
|
||||
def login(self, customer_id: UUID, username: str, key_selection: list[int]) -> bool:
|
||||
if customer_id not in self.customers.keys():
|
||||
raise ValueError("Customer ID not found")
|
||||
customer = self.customers[customer_id]
|
||||
|
||||
10
src/user.py
10
src/user.py
@@ -1,9 +1,11 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
import numpy as np
|
||||
|
||||
from src.models import EncipheredNKode
|
||||
from src.customer_cipher import CustomerCipher
|
||||
from src.user_cipher import UserCipher
|
||||
from src.user_keypad import UserKeypad
|
||||
from src.utils import xor_lists
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -14,10 +16,10 @@ class User:
|
||||
user_keypad: UserKeypad
|
||||
renew: bool = field(default=False)
|
||||
|
||||
def renew_keys(self, set_xor: list[int], prop_xor: list[int]):
|
||||
def renew_keys(self, set_xor: np.ndarray, prop_xor: np.ndarray):
|
||||
self.renew = True
|
||||
self.cipher.set_key = xor_lists(self.cipher.set_key, set_xor)
|
||||
self.cipher.prop_key = xor_lists(self.cipher.prop_key, prop_xor)
|
||||
self.cipher.set_key = np.bitwise_xor(self.cipher.set_key, set_xor)
|
||||
self.cipher.prop_key = np.bitwise_xor(self.cipher.prop_key, prop_xor)
|
||||
|
||||
def refresh_passcode(self, passcode_attr_idx: list[int], customer_attributes: CustomerCipher):
|
||||
self.cipher = UserCipher.create(
|
||||
|
||||
@@ -18,7 +18,7 @@ class UserCipher:
|
||||
max_nkode_len: int
|
||||
|
||||
@classmethod
|
||||
def create(cls, keypad_size: KeypadSize, set_values: list[int], max_nkode_len: int) -> 'UserCipher':
|
||||
def create(cls, keypad_size: KeypadSize, set_values: np.ndarray, max_nkode_len: int) -> 'UserCipher':
|
||||
if len(set_values) != keypad_size.props_per_key:
|
||||
raise ValueError("Invalid set values")
|
||||
|
||||
@@ -35,18 +35,15 @@ class UserCipher:
|
||||
max_nkode_len=max_nkode_len
|
||||
)
|
||||
|
||||
def pad_user_mask(self, user_mask: list[int], set_vals: list[int]) -> np.ndarray:
|
||||
def pad_user_mask(self, user_mask: np.ndarray, set_vals: np.ndarray) -> np.ndarray:
|
||||
if len(user_mask) >= self.max_nkode_len:
|
||||
raise ValueError("User mask is too long")
|
||||
|
||||
user_mask_array = np.array(user_mask, dtype=np.uint16)
|
||||
set_vals_array = np.array(set_vals, dtype=np.uint16)
|
||||
|
||||
# Create padding of random choices from set_vals
|
||||
padding_size = self.max_nkode_len - len(user_mask)
|
||||
padding_indices = np.random.choice(len(set_vals), padding_size)
|
||||
padding = np.array([set_vals[i] for i in padding_indices], dtype=np.uint16)
|
||||
|
||||
# Concatenate original mask with padding
|
||||
padded_user_mask = np.concatenate([user_mask_array, padding])
|
||||
return padded_user_mask
|
||||
@@ -121,7 +118,7 @@ class UserCipher:
|
||||
mask = self.encode_base64_str(ciphered_mask)
|
||||
return mask
|
||||
|
||||
def decipher_mask(self, mask: str, set_vals: list, passcode_len: int) -> list[int]:
|
||||
def decipher_mask(self, mask: str, set_vals: np.ndarray, passcode_len: int) -> np.ndarray:
|
||||
set_vals_array = np.array(set_vals, dtype=np.uint16)
|
||||
decoded_mask = self.decode_base64_str(mask)
|
||||
deciphered_mask = np.bitwise_xor(decoded_mask, self.mask_key)
|
||||
|
||||
@@ -1,17 +1,17 @@
|
||||
from dataclasses import dataclass
|
||||
from secrets import choice
|
||||
import numpy as np
|
||||
from src.models import KeypadSize
|
||||
from src.utils import list_to_matrix, secure_fisher_yates_shuffle, matrix_to_list, matrix_transpose
|
||||
|
||||
@dataclass
|
||||
class UserKeypad:
|
||||
keypad: list[int]
|
||||
keypad: np.ndarray
|
||||
keypad_size: KeypadSize
|
||||
|
||||
@classmethod
|
||||
def create(cls, keypad_size: KeypadSize) -> 'UserKeypad':
|
||||
keypad = UserKeypad(
|
||||
keypad=list(range(keypad_size.numb_of_props)),
|
||||
keypad=np.arange(keypad_size.numb_of_props),
|
||||
keypad_size=keypad_size
|
||||
)
|
||||
keypad.random_keypad_shuffle()
|
||||
@@ -22,71 +22,77 @@ class UserKeypad:
|
||||
raise ValueError("Keypad size is dispersable")
|
||||
self.random_keypad_shuffle()
|
||||
keypad_matrix = self.keypad_matrix()
|
||||
attr_set_view = matrix_transpose(keypad_matrix)
|
||||
attr_set_view = secure_fisher_yates_shuffle(attr_set_view)
|
||||
attr_set_view = keypad_matrix.T
|
||||
#attr_set_view = secure_fisher_yates_shuffle(attr_set_view)
|
||||
attr_set_view = np.random.permutation(attr_set_view)
|
||||
attr_set_view = attr_set_view[:self.keypad_size.numb_of_keys]
|
||||
keypad_matrix = matrix_transpose(attr_set_view)
|
||||
keypad_matrix = attr_set_view.reshape(-1)#matrix_transpose(attr_set_view)
|
||||
return UserKeypad(
|
||||
keypad=matrix_to_list(keypad_matrix),
|
||||
keypad=keypad_matrix.reshape(-1),#matrix_to_list(keypad_matrix),
|
||||
keypad_size=KeypadSize(
|
||||
numb_of_keys=self.keypad_size.numb_of_keys,
|
||||
props_per_key=self.keypad_size.numb_of_keys
|
||||
)
|
||||
)
|
||||
|
||||
def keypad_matrix(self) -> list[list[int]]:
|
||||
return list_to_matrix(self.keypad, self.keypad_size.props_per_key)
|
||||
def keypad_matrix(self) -> np.ndarray:
|
||||
return self.keypad.reshape(-1,self.keypad_size.props_per_key)
|
||||
|
||||
def random_keypad_shuffle(self):
|
||||
rng = np.random.default_rng()
|
||||
keypad_view = self.keypad_matrix()
|
||||
keypad_view = secure_fisher_yates_shuffle(keypad_view)
|
||||
set_view = matrix_transpose(keypad_view)
|
||||
set_view = [secure_fisher_yates_shuffle(attr_set) for attr_set in set_view]
|
||||
keypad_view = matrix_transpose(set_view)
|
||||
self.keypad = matrix_to_list(keypad_view)
|
||||
rng.shuffle(keypad_view, axis=0)
|
||||
set_view = keypad_view.T
|
||||
set_view = rng.permutation(set_view, axis=1)
|
||||
keypad_view = set_view.T
|
||||
self.keypad = keypad_view.reshape(-1)
|
||||
|
||||
def disperse_keypad(self):
|
||||
if not self.keypad_size.is_dispersable:
|
||||
raise ValueError("Keypad size is not dispersable")
|
||||
user_keypad_matrix = list_to_matrix(self.keypad, self.keypad_size.props_per_key)
|
||||
shuffled_keys = secure_fisher_yates_shuffle(user_keypad_matrix)
|
||||
|
||||
attr_rotation = secure_fisher_yates_shuffle(list(range(self.keypad_size.numb_of_keys)))[
|
||||
:self.keypad_size.props_per_key]
|
||||
rng = np.random.default_rng()
|
||||
#user_keypad_matrix = list_to_matrix(self.keypad, self.keypad_size.props_per_key)
|
||||
user_keypad_matrix = self.keypad_matrix()
|
||||
#shuffled_keys = secure_fisher_yates_shuffle(user_keypad_matrix)
|
||||
shuffled_keys = rng.permutation(user_keypad_matrix, axis=0)
|
||||
#attr_rotation = secure_fisher_yates_shuffle(list(range(self.keypad_size.numb_of_keys)))[:self.keypad_size.props_per_key]
|
||||
attr_rotation = rng.permutation(list(range(self.keypad_size.numb_of_keys)))[:self.keypad_size.props_per_key]
|
||||
dispersed_keypad = self.random_attribute_rotation(
|
||||
shuffled_keys,
|
||||
attr_rotation,
|
||||
attr_rotation.tolist(),
|
||||
)
|
||||
self.keypad = matrix_to_list(dispersed_keypad)
|
||||
self.keypad = dispersed_keypad.reshape(-1)
|
||||
|
||||
def partial_keypad_shuffle(self):
|
||||
# TODO: this should be split shuffle
|
||||
numb_of_selected_sets = self.keypad_size.props_per_key // 2
|
||||
# randomly shuffle half the sets. if props_per_key is odd, randomly add one 50% of the time
|
||||
numb_of_selected_sets += choice([0, 1]) if (self.keypad_size.props_per_key & 1) == 1 else 0
|
||||
selected_sets = secure_fisher_yates_shuffle(list(range(self.keypad_size.props_per_key)))[:numb_of_selected_sets]
|
||||
user_keypad_matrix = self.keypad_matrix()
|
||||
shuffled_keys = secure_fisher_yates_shuffle(user_keypad_matrix)
|
||||
keypad_by_sets = []
|
||||
for idx, attrs in enumerate(matrix_transpose(shuffled_keys)):
|
||||
if idx in selected_sets:
|
||||
keypad_by_sets.append(secure_fisher_yates_shuffle(attrs))
|
||||
else:
|
||||
keypad_by_sets.append(attrs)
|
||||
self.keypad = matrix_to_list(matrix_transpose(keypad_by_sets))
|
||||
#numb_of_selected_sets = self.keypad_size.props_per_key // 2
|
||||
## randomly shuffle half the sets. if props_per_key is odd, randomly add one 50% of the time
|
||||
#numb_of_selected_sets += choice([0, 1]) if (self.keypad_size.props_per_key & 1) == 1 else 0
|
||||
#selected_sets = secure_fisher_yates_shuffle(list(range(self.keypad_size.props_per_key)))[:numb_of_selected_sets]
|
||||
#user_keypad_matrix = self.keypad_matrix()
|
||||
#shuffled_keys = secure_fisher_yates_shuffle(user_keypad_matrix)
|
||||
#keypad_by_sets = []
|
||||
#for idx, attrs in enumerate(matrix_transpose(shuffled_keys)):
|
||||
# if idx in selected_sets:
|
||||
# keypad_by_sets.append(secure_fisher_yates_shuffle(attrs))
|
||||
# else:
|
||||
# keypad_by_sets.append(attrs)
|
||||
#self.keypad = matrix_to_list(matrix_transpose(keypad_by_sets))
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def random_attribute_rotation(
|
||||
user_keypad: list[list[int]],
|
||||
user_keypad: np.ndarray,
|
||||
attr_rotation: list[int]
|
||||
) -> list[list[int]]:
|
||||
transposed_user_keypad = matrix_transpose(user_keypad)
|
||||
if len(attr_rotation) != len(transposed_user_keypad):
|
||||
raise ValueError("attr_rotation must be the same length as the transposed user keypad")
|
||||
for idx, attr_set in enumerate(transposed_user_keypad):
|
||||
) -> np.ndarray:
|
||||
transposed = user_keypad.T
|
||||
if len(attr_rotation) != len(transposed):
|
||||
raise ValueError("attr_rotation must be the same length as the number of attributes")
|
||||
for idx, attr_set in enumerate(transposed):
|
||||
rotation = attr_rotation[idx]
|
||||
transposed_user_keypad[idx] = attr_set[rotation:] + attr_set[:rotation]
|
||||
return matrix_transpose(transposed_user_keypad)
|
||||
rotation = rotation % len(attr_set) if len(attr_set) > 0 else 0
|
||||
transposed[idx] = np.roll(attr_set, rotation)
|
||||
return transposed.T
|
||||
|
||||
def attribute_adjacency_graph(self) -> dict[int, set[int]]:
|
||||
user_keypad_keypad = self.keypad_matrix()
|
||||
@@ -103,4 +109,4 @@ class UserKeypad:
|
||||
if not (0 <= set_idx < self.keypad_size.props_per_key):
|
||||
raise ValueError(f"set_idx must be between 0 and {self.keypad_size.props_per_key - 1}")
|
||||
keypad_attr_idx = self.keypad_matrix()
|
||||
return keypad_attr_idx[key_numb][set_idx]
|
||||
return int(keypad_attr_idx[key_numb][set_idx])
|
||||
|
||||
@@ -9,12 +9,6 @@ def secure_fisher_yates_shuffle(arr: list) -> list:
|
||||
return arr
|
||||
|
||||
|
||||
def generate_random_nonrepeating_list(list_len: int, min_val: int = 0, max_val: int = 2 ** 16) -> list[int]:
|
||||
if max_val - min_val < list_len:
|
||||
raise ValueError("Range of values is less than the list length requested")
|
||||
return secure_fisher_yates_shuffle(list(range(min_val, max_val)))[:list_len]
|
||||
|
||||
|
||||
def xor_lists(l1: list[int], l2: list[int]):
|
||||
if len(l1) != len(l2):
|
||||
raise ValueError("Lists must be of equal length")
|
||||
|
||||
Reference in New Issue
Block a user