refactor set_key -> position_key
This commit is contained in:
@@ -6,16 +6,13 @@ from src.models import KeypadSize
|
||||
|
||||
@dataclass
|
||||
class CustomerCipher:
|
||||
prop_key: np.ndarray
|
||||
set_key: np.ndarray
|
||||
property_key: np.ndarray
|
||||
position_key: np.ndarray
|
||||
keypad_size: KeypadSize
|
||||
MAX_KEYS: ClassVar[int] = 256
|
||||
MAX_PROP_PER_KEY: ClassVar[int] = 256
|
||||
|
||||
def __post_init__(self):
|
||||
self.check_keys_vs_props()
|
||||
|
||||
def check_keys_vs_props(self) -> None:
|
||||
if self.keypad_size.is_dispersable:
|
||||
raise ValueError("number of keys must be less than the number of "
|
||||
"properties per key to be dispersion resistant")
|
||||
@@ -24,28 +21,40 @@ class CustomerCipher:
|
||||
def create(cls, keypad_size: KeypadSize) -> 'CustomerCipher':
|
||||
if keypad_size.numb_of_keys > cls.MAX_KEYS or keypad_size.props_per_key > cls.MAX_PROP_PER_KEY:
|
||||
raise ValueError(f"Keys and properties per key must not exceed {cls.MAX_KEYS}")
|
||||
|
||||
# Using numpy to generate non-repeating random integers
|
||||
prop_key = np.random.choice(2 ** 16, size=keypad_size.total_props, replace=False)
|
||||
set_key = np.random.choice(2 ** 16, size=keypad_size.props_per_key, replace=False)
|
||||
|
||||
pos_key = np.random.choice(2 ** 16, size=keypad_size.props_per_key, replace=False)
|
||||
return cls(
|
||||
prop_key=prop_key,
|
||||
set_key=set_key,
|
||||
property_key=prop_key,
|
||||
position_key=pos_key,
|
||||
keypad_size=keypad_size,
|
||||
)
|
||||
|
||||
def renew(self):
|
||||
self.prop_key = np.random.choice(2 ** 16, size=self.keypad_size.total_props, replace=False)
|
||||
self.set_key = np.random.choice(2 ** 16, size=self.keypad_size.props_per_key, replace=False)
|
||||
self.property_key = np.random.choice(2 ** 16, size=self.keypad_size.total_props, replace=False)
|
||||
self.position_key = np.random.choice(2 ** 16, size=self.keypad_size.props_per_key, replace=False)
|
||||
|
||||
def get_prop_set_val(self, prop: int) -> int:
|
||||
assert np.isin(prop, self.prop_key)
|
||||
prop_idx = np.where(self.prop_key == prop)[0][0]
|
||||
set_idx = prop_idx % self.keypad_size.props_per_key
|
||||
return int(self.set_key[set_idx])
|
||||
def get_props_position_vals(self, props: np.ndarray | list[int]) -> np.ndarray:
|
||||
if not all([prop in self.property_key for prop in props]):
|
||||
raise ValueError("Property values must be within valid range")
|
||||
pos_vals = [self._get_prop_position_val(prop) for prop in props]
|
||||
return np.array(pos_vals)
|
||||
|
||||
def get_set_index(self, set_val: int) -> int:
|
||||
if not np.isin(set_val, self.set_key):
|
||||
raise ValueError(f"Set value {set_val} not found in set values")
|
||||
return int(np.where(self.set_key == set_val)[0][0])
|
||||
def _get_prop_position_val(self, prop: int) -> int:
|
||||
assert prop in self.property_key
|
||||
prop_idx = np.where(self.property_key == prop)[0][0]
|
||||
pos_idx = prop_idx % self.keypad_size.props_per_key
|
||||
return int(self.position_key[pos_idx])
|
||||
|
||||
def get_position_index(self, pos_val: int) -> int:
|
||||
if not np.isin(pos_val, self.position_key):
|
||||
raise ValueError(f"Position value {pos_val} not found in customer cipher position_key")
|
||||
return int(np.where(self.position_key == pos_val)[0][0])
|
||||
|
||||
def get_passcode_position_indices_padded(self, passcode_indices: list[int], max_nkode_len: int) -> list[int]:
|
||||
if not all(0 <= idx < self.keypad_size.total_props for idx in passcode_indices):
|
||||
raise ValueError("invalid passcode index")
|
||||
pos_indices = [idx % self.keypad_size.props_per_key for idx in passcode_indices]
|
||||
pad_len = max_nkode_len - len(passcode_indices)
|
||||
pad = np.random.choice(self.keypad_size.props_per_key, pad_len, replace=True)
|
||||
return pos_indices + pad.tolist()
|
||||
Reference in New Issue
Block a user