diff --git a/README.md b/README.md
index ff4768f..9741fef 100644
--- a/README.md
+++ b/README.md
@@ -1,446 +1,2 @@
# README
Play around with the code in /notebooks
-
-## Customer Creation
-Before creating a user, a customer generates random properties and set
-values. The customers manage users. They define an nKode policy, keypad's dimensions,
-properties/sets in the keypad, and the frequency of property renewal.
-### nKode Policy and Keypad Size
-An nKode policy defines:
-
- - the maximum length of a user's nKode
- - the minimum length of a user's nKode
- - the number of unique set values in a user's nKode
- - the number of unique values in a user's nKode
- - the number of bytes in an property and set
-
-
-The keypad size defines:
-
- - the number of keys in the keypad displayed to the user
- - properties per key
-
-
-To be [dispersion](nkode_concepts.md/#dispersion-resistant-keypad) resistant, the number of properties must be greater than the number of keys.
-
-```
-api = NKodeAPI()
-
-policy = NKodePolicy(
- max_nkode_len=10,
- min_nkode_len=4,
- distinct_sets=0,
- distinct_properties=4,
- byte_len=2
-)
-
-keypad_size = KeypadSize(
- numb_of_keys = 5,
- props_per_key = 6 # aka number of sets
-)
-
-customer_id = api.create_new_customer(keypad_size, policy)
-customer = api.customers[customer_id]
-```
-### Customer properties and Sets
-A customer has users and defines the properties and set values for all its users.
-Since our customer has 5 keys and 6 properties per key,
-this gives a customer keypad of 30 distinct properties and 6 distinct property sets.
-Each property belongs to one of the 6 sets. Each property and set value is a unique 2-byte integer in this example.
-
-```
-set_vals = customer.cipher.set_key
-
-Customer Sets: [51397 49224 50087 24444 43554 21522]
-```
-
-```
-prop_vals = customer.cipher.prop_key
-keypad_view(prop_vals, keypad_size.props_per_key)
-
-Customer properties:
-[65030 40058 49729 42519 32475 21731]
-[19446 3351 17075 17586 20753 15754]
-[19712 56685 43602 30750 54931 27419]
-[40397 10398 13477 26037 17943 47642]
-[58359 15284 53370 4343 16407 46898]
-
-```
-
-properties organized by set:
-```
-prop_set_view = matrix_transpose(prop_keypad_view)
-set_property_dict = dict(zip(set_vals, prop_set_view))
-
-Set to property Map:
-51397 : [65030 19446 19712 40397 58359]
-49224 : [40058 3351 56685 10398 15284]
-50087 : [49729 17075 43602 13477 53370]
-24444 : [42519 17586 30750 26037 4343]
-43554 : [32475 20753 54931 17943 16407]
-21522 : [21731 15754 27419 47642 46898]
-
-```
-
-## User Signup
-Now that we have a customer, we can create users. To create a new user:
-
-1. Generate a random keypad
-2. The user sets their nKode and sends their selection to the server
-3. The user confirms their nKode. If the user's nKode matches the policy, the server creates the user.
-### Random keypad Generation
-The user's keypad must be dispersable so the server can determine the user's nkode.
-The server randomly drops property sets until
-the number of properties equals the number of keys, making the keypad dispersable.
-In our case, the server randomly drops 1 property set.
-to give us a 5 X 5 keypad with possible index values ranging from 0-29.
-Each value in the keypad is the index value of a customer property.
-The user never learns what their "real" property is. They do not see the index value representing their nKode or
-the customer server-side value.
-
-```
-session_id, signup_keypad = api.generate_index_keypad(customer_id)
-signup_keypad_keypad = list_to_matrix(signup_keypad, keypad_size.props_per_key)
-
-Signup Keypad:
-Key 1: [19 7 25 1 13]
-Key 2: [18 6 24 0 12]
-Key 3: [21 9 27 3 15]
-Key 4: [23 11 29 5 17]
-Key 5: [20 8 26 2 14]
-
-```
-
-### Set nKode
-The user identifies properties in the keypad they want in their nkode. Each property has an index value.
-Below, the user has selected `[19, 7, 25, 1]`. These index values can be represented by anything in the GUI.
-The only requirement is that the GUI properties be associated with the same index every time the user logs in.
-If users want to change anything about their keypad, they must also change their nkode.
-
-```
-username = test_user
-user_passcode = [19, 7, 25, 1]
-selected_keys_set = select_keys_with_passcode_values(user_passcode, signup_keypad, keypad_size.props_per_key)
-
-Selected Keys
-[0, 0, 0, 0]
-```
-
-The user's passcode server side properties are:
-```
-server_side_prop = [customer.cipher.prop_key[idx] for idx in user_passcode]
-
-User Passcode Server-side properties: [np.int64(10398), np.int64(3351), np.int64(15284), np.int64(40058)]
-```
-
-### Confirm nKode
-The user submits the set keypad to the server and receives the _confirm keypad_ as a response.
-The user finds their nKode again.
-
-```
-confirm_keypad = api.set_nkode(username, customer_id, selected_keys_set, session_id)
-keypad_view(confirm_keypad, keypad_size.numb_of_keys)
-selected_keys_confirm = select_keys_with_passcode_values(user_passcode, confirm_keypad, keypad_size.numb_of_keys)
-
-Confirm Keypad:
-Key 1: [20 7 27 5 12]
-Key 2: [23 9 26 0 13]
-Key 3: [18 8 29 1 15]
-Key 4: [19 11 24 3 14]
-Key 5: [21 6 25 2 17]
-
-Selected Keys:
-[3, 0, 4, 2]
-```
-
-The user submits their confirmation key selection and the user is created
-```
-success = api.confirm_nkode(username, customer_id, selected_keys_confirm, session_id)
-```
-
-### Passcode Enciphering, Hashing, and Salting
-When a new user creates an nKode, the server caches its set and confirms the keypad and the user's key selection.
-On the last api.confirm_nkode, the server:
-
-1. Deduces the user's properties
-2. Validates the Passcode against the nKodePolicy
-3. Creates new User Cipher Keys
-4. Enciphers the user's mask
-5. Enciphers, salts, and hashes the user's passcode
-
-Steps 1-2 are straightforward. For a better idea of how they work, see pyNKode.
-
-#### User Cipher Keys
-
-##### User Cipher Keys Data Structure
-```
-set_key = generate_random_nonrepeating_list(keypad_size.props_per_key, max_numb=2**(8*numb_of_bytes))
-set_key = xor_lists(set_key, customer_prop.set_vals)
-
-UserCipherKeys(
- prop_key=generate_random_nonrepeating_list(keypad_size.props_per_key * keypad_size.numb_of_keys, max_numb=2**(8*numb_of_bytes)),
- pass_key=generate_random_nonrepeating_list(max_nkode_len, max_numb=2**(8*numb_of_bytes)),
- mask_key=generate_random_nonrepeating_list(max_nkode_len, max_numb=2**(8*numb_of_bytes)),
- set_key=set_key,
- salt=bcrypt.gensalt(),
- max_nkode_len=max_nkode_len
-)
-```
-
-##### User Cipher Keys Values
-```
-user_cipher = UserCipherKeys(
- prop_key = [ 2923 16019 14458 50197 31207 7212 56686 44981 2641 64112 13044 29822
- 1902 22608 40919 35763 49353 20507 18363 34108 32269 6440 21357 37870
- 60382 18170 45147 13683 20896 12198],
- pass_key = [31251 55189 60990 1342 51754 25296 19081 956 41188 43289],
- mask_key = [54532 41537 22695 64404 28419 7322 24742 54924 2951 57084],
- set_key = [ 3824 27422 49987 58720 10692 60061],
- salt = b'$2b$12$iLYVBzbu9DVSg7S.ZBzB..',
- max_nkode_len = 10
-)
-```
-
-The method UserCipherKeys.encipher_nkode secures a user's nKode in the database. This method is called in api.confirm_nkode
-
-```
-class EncipheredNKode(BaseModel):
- code: str
- mask: str
-```
-
-#### Mask Enciphering
-
-Recall:
-
-- set_key_i = (set_rand_numb_i ^ set_val_i)
-- mask_key_i = mask_rand_numb_i
-- padded_passcode_server_set_i = set_val_i
-- len(set_key) == len(mask_key) == (padded_passcode_server_set) == max_nkode_len == 10
- where i is the index
-
-- mask_i = mask_key_i ^ padded_passcode_server_set_i ^ set_key_i
-- mask_i = mask_rand_num_i ^ set_val_i ^ set_rand_numb_i ^ set_val_i
-- mask_i = mask_rand_num_i ^ set_rand_numb_i # set_val_i is cancelled out
-
-
-```
-passcode = [19, 7, 25, 1]
-passcode_server_prop = [customer.cipher.prop_key[idx] for idx in passcode]
-passcode_server_set = [customer.cipher.get_prop_set_val(prop) for prop in passcode_server_prop]
-
-Passcode Set Vals: [np.int64(10398), np.int64(3351), np.int64(15284), np.int64(40058)]
-Passcode prop Vals: [49224, 49224, 49224, 49224]
-```
-
-```
-padded_passcode_server_set = user_cipher.pad_user_mask(passcode_server_set, customer.nkode_policy.max_nkode_len)
-
-set_idx = [customer.cipher.get_set_index(set_val) for set_val in padded_passcode_server_set]
-mask_set_keys = [user_cipher.set_key[idx] for idx in set_idx]
-
-ciphered_mask = xor_lists(mask_set_keys, padded_passcode_server_set)
-ciphered_mask = xor_lists(ciphered_mask, user_cipher.mask_key)
-
-mask = user_cipher.encode_base64_str(ciphered_mask)
-Mask: c6kE7P4KXTm3d3KmDprj8dPzBog=
-```
-
-#### Passcode Enciphering and Hashing
-
-- ciphered_customer_prop = prop_key ^ customer_prop
-- ciphered_passcode_i = pass_key_i ^ ciphered_customer_prop_i
-- code = hash(ciphered_passcode, salt)
-
-```
-ciphered_customer_props = xor_lists(customer.cipher.prop_key, user_cipher.prop_key)
-passcode_ciphered_props = [ciphered_customer_props[idx] for idx in passcode]
-pad_len = customer.nkode_policy.max_nkode_len - passcode_len
-
-passcode_ciphered_props.extend([0 for _ in range(pad_len)])
-
-ciphered_code = xor_lists(passcode_ciphered_props, user_cipher.pass_key)
-
-passcode_bytes = int_array_to_bytes(ciphered_code)
-passcode_digest = base64.b64encode(hashlib.sha256(passcode_bytes).digest())
-hashed_data = bcrypt.hashpw(passcode_digest, user_cipher.salt)
-code = hashed_data.decode("utf-8")
-
-Code: $2b$12$iLYVBzbu9DVSg7S.ZBzB..eoFhCtiWBtfjXNLULtODYBH8Epva1pC
-```
-
-## User Login
-To login, a user:
-
-1. Gets login keypad
-2. Submits key entry
-
-### Get Login keypad
-The client requests the user's login keypad.
-```
-login_keypad = api.get_login_keypad(username, customer_id)
-keypad_view(login_keypad, keypad_size.props_per_key)
-```
-The server returns a randomly shuffled keypad. Learn more about how the [User keypad Shuffle](nkode_concepts.md/#user-keypad-shuffle) works
-```
-Login keypad Keypad View:
-Key 1: [18 19 20 21 22 23]
-Key 2: [ 6 7 8 9 10 11]
-Key 3: [24 25 26 27 28 29]
-Key 4: [0 1 2 3 4 5]
-Key 5: [12 13 14 15 16 17]
-
-```
-Recall the user's passcode is `user_passcode = [19, 7, 25, 1]` so the user selects keys ` selected_keys_login = [0, 1, 2, 3]`
-
-```
-success = api.login(customer_id, username, selected_keys_login)
-```
-
-### Validate Login Key Entry
-- decipher user mask and recover nkode set values
-- get presumed property from key selection and set values
-- encipher, salt, and hash presumed property values and compare them to the users hashed code
-
-#### Decipher Mask
-
-Recall:
-
-- set_key_i = (set_key_rand_numb_i ^ set_val_i)
-- mask_i = mask_key_rand_num_i ^ set_key_rand_numb_i
-
-Recover nKode set values:
-
-- decode mask from base64 to int
-- deciphered_mask = mask ^ mask_key
-- deciphered_mask_i = set_key_rand_numb # mask_key_rand_num_i is cancelled out
-- set_key_rand_component = set_key ^ set_values
-- deduce the set value
-
-```
-user = customer.users[username]
-user_cipher = user.user_cipher
-user_mask = user.enciphered_passcode.mask
-decoded_mask = user_cipher.decode_base64_str(user_mask)
-deciphered_mask = xor_lists(decoded_mask, user_cipher.mask_key)
-set_key_rand_component = xor_lists(set_vals, user_cipher.set_key)
-passcode_sets = []
-for set_cipher in deciphered_mask[:passcode_len]:
- set_idx = set_key_rand_component.index(set_cipher)
- passcode_sets.append(set_vals[set_idx])
-
-Passcode Sets: [49224, 49224, 49224, 49224]
-```
-
-
-### Get Presumed properties
-```
-set_vals_idx = [customer.cipher.get_set_index(set_val) for set_val in passcode_sets]
-
-presumed_selected_properties_idx = []
-for idx in range(passcode_len):
- key_numb = selected_keys_login[idx]
- set_idx = set_vals_idx[idx]
- selected_prop_idx = customer.users[username].user_keypad.get_prop_idx_by_keynumb_setidx(key_numb, set_idx)
- presumed_selected_properties_idx.append(selected_prop_idx)
-
-Presumped Passcode: [19, 7, 25, 1]
-Recall User Passcode: [19, 7, 25, 1]
-```
-### Compare Enciphered Passcodes
-```
-enciphered_nkode = user_cipher.encipher_salt_hash_code(presumed_selected_properties_idx, customer.cipher)
-```
-If `enciphered_nkode == user.enciphered_passcode.code`, the user's key selection is valid, and the login is successful.
-
-## Renew properties
-properties renew is invoked with the renew_properties method: `api.renew_properties(customer_id)`
-The renew properties process has three steps:
-1. Renew Customer properties
-2. Renew User Keys
-3. Refresh User on Login
-
-When the customer calls the `renew_properties` method, the method replaces the customer's properties and set values. All its users go through an intermediate
-renewal step. The users fully renew after their first successful login. This first login refreshes their keys, salt, and hash with new values.
-
-
-### Customer Renew
-Old Customer properties and set values are cached and copied to variables before renewal.
-```
-old_sets = customer.cipher.set_key
-
-Customer Sets: [51397 49224 50087 24444 43554 21522]
-```
-
-```
-old_prop = customer.cipher.prop_key
-
-Customer properties:
-[65030 40058 49729 42519 32475 21731]
-[19446 3351 17075 17586 20753 15754]
-[19712 56685 43602 30750 54931 27419]
-[40397 10398 13477 26037 17943 47642]
-[58359 15284 53370 4343 16407 46898]
-
-```
-
-After the renewal, the customer properties and sets are new randomly generated values.
-```
-api.renew_properties(customer_id)
-
-set_vals = customer.cipher.set_key
-
-Customer Sets: [ 7754 52659 44415 3961 61872 57312]
-```
-
-```
-prop_vals = customer.cipher.prop_key
-
-Customer properties:
-[57881 51596 44681 30104 33018 30596]
-[35764 62538 21274 10697 11311 42560]
-[ 4979 33517 18509 55230 26674 24108]
-[63335 41237 52341 30975 12398 7267]
-[53495 52030 41547 59730 36417 31547]
-
-```
-
-### Renew User
-During the renewal, each user goes through a temporary transition period.
-```
-props_xor = xor_lists(new_props, old_props)
-sets_xor = xor_lists(new_sets, old_sets)
-for user in customer.users.values():
- user.renew = True
- user.user_cipher.set_key = xor_lists(user.user_cipher.set_key, sets_xor)
- user.user_cipher.prop_key = xor_lists(user.user_cipher.prop_key, props_xor)
-```
-##### User prop Key
-The user's prop key was a randomly generated list of length `numb_of_keys * prop_per_key`.
-Now each value in the prop key is `prop_key_i = old_prop_key_i ^ new_prop_i ^ old_prop_i`.
-Recall in the login process, `ciphered_customer_props = prop_key ^ customer_prop`.
-Since the customer_prop is now the new value, it gets canceled out, leaving:
-```
-new_prop_key = old_prop_key ^ old_prop ^ new_prop
-ciphered_customer_props = new_prop_key ^ new_prop
-ciphered_customer_props = old_prop_key ^ old_prop # since new_prop cancel out
-```
-Using the new customer properties, we can validate the user's login attempt with the same hash.
-
-##### User Set Key
-The user's set key was a randomly generated list of length `prop_per_key` xor `customer_set_vals`.
-The `old_set_vals` have been replaced with the new `new_set_vals`. The deciphering process described above
-remains the same.
-
-### User Refresh
-Once the user has a successful login, they get a new salt and cipher keys, and their `enciphered_passcode` is recomputed
-with the new values.
-```
-user.user_cipher = UserCipherKeys.new(
- customer.cipher.keypad_size,
- customer.cipher.set_key,
- user.user_cipher.max_nkode_len
-)
-user.enciphered_passcode = user.user_cipher.encipher_nkode(presumed_selected_properties_idx, customer.cipher)
-user.renew = False
-```
\ No newline at end of file