PINDragon Explanation and Calculations

Guohui Zhao, Yan Wang, Kemin Xu
Department of Statistics
University of Georgia

October 20, 2015

1 Introduction

1.1 Purpose of PINDragon

The PINDragon interface is a newly designed passcode generator created in order to make
passcodes more secure. The PINDragon interface is different from a traditional keypad
in that it utilizes more properties of key layout, as discussed below. Thus, the possible
combination of passcodes that clients can create through PINDragon is much larger than
that through traditional keypad systems. In addition, it introduces a novel technique (i.e.
shuffling) to rearrange the properties on each key after each password attempt, which makes
decoding the passcode more difficult.

1.2 Concept of Key Properties

PINDragon adopts a K-key console design (the traditional keypad design used in our exam-
ples has K = 10 keys, arranged as shown in Figure 1). The traditional keypad design has
only two properties, Position and Numeral, and they are linked in that the key in position
[1] bears the numeral ‘1°, the key in position [2] bears the numeral ‘2’ ..., the key in the
bottom center ([0] position) bears the numeral ‘0’. Under the PINDragon interface, however,
up to P=7 properties (Position, Center Numeral, Color, Upper Left Character, Upper Right
Character, Lower Left Character, and Lower Right Character) can be displayed for each key,
as demonstrated in Figures 1 and 2 on page 4 of this report. Each of the P property sets
contains K different levels, with each of the K levels of a property set displayed exactly once
in the keyboard configuration. Table 1 below displays the K = 10 levels that are used for
each of the P = 7 property sets under the current implementation of PINDragon.

Table 1: Baseline Property Sets and Elements

Set | Property el e2 e3 ed ed eb e7 e8 €9 el0
1 | Position 1] 2] 3] [4] 5] (6] [7] 8] (9] (0]

2 Central Numeral 1 2 3 4 5 6 7 8 9 0

3 | Color Red | Yellow | Green | Blue | Orange | White | Black | Brown | Gray | Purple
4 | Upper Left A [] O e} e & Q O 'y *

5 | Upper Right A B C D E F G H ! Q@

6 | Lower Left I J K L M N O P Q $

7 | Lower Right R S T U A% W X Y y/ &

Table 2: Permutations Yielding Keypad of Figure 1

Set | Property el e2 e3 e4 e €6 e7 e8 e9 el0
1| Position 1] 2] 3] (4] [5] (6] 7] B8 | 9] (0]
2 Central Numeral 2 1 6 4 9 5 3 8 7 0
3 | Color Blue | Green | Brown | Black | White | Orange | Yellow | Gray | Red | Purple
4 | Upper Left | & * v o e A & O [
5 Upper Right B G @] F ! D A H C E
6 | Lower Left I J K L M N [0) P Q $
7 | Lower Right T S X A% & U R Y Z W

Table 3: Permutations Yielding Keypad of Figure 2

Set | Property el e2 e3 e4 eb e6 e7 e8 e9 el0
1| Position (1] 2] 3] [4] 5] (6] [7] 8] 9] [0]
2 Central Numeral 8 7 4 0 1 9 3 6 5 2
3 Color Green | Blue | Yellow | Grey | Purple | Black | White | Red | Orange | Brown
4 | Upper Left O * () &) A [] o) 1) O
5 Upper Right F E @ C H B D A G !
6 | Lower Left Q L N M J K P O $ I
7 | Lower Right & W X S U Y 7 A% R T

As we will soon see, increasing either K or P improves the security of the design, but in-
creasing either creates other difficulties. One could increase K relatively easily. For example,
one could increase from K = 10 to K = 12 rather easily by adding two keys at the bottom
of the traditional keypad, to the immediate left and right of the key in the [0] position. If
one did this, however, one would need to create two more levels for each of other properties
shown in Table 1. Increasing the number of Property sets from P = 7 to a larger value
would be very problematic, as the keys are already extremely cluttered with information
when P = 7. Thus, while formulas for general (K ,P) will be presented in this report, we
will primarily be focused on the case where K = 10 and P = 7, since these appear to be the
upper limits currently feasible.

Simply assigning more properties (than the standard two) to each key will not, of itself,
make the passcode more secure. For example, if the keypad always looked as shown in
Figure 1, it wouldn’t deter an intruder who happened to observe a user press, in sequential
order, the keys in positions ([1],[2],[7],[9]). To gain access to the user’s account, the intruder
might think that s/he should also press the keys in positions ([1],[2],[7],[9]), or s/he might
feel that s/he should press the keys with central numerals (‘2’,1°,°3",7") or perhaps the keys
with colors (Blue, Green, Yellow, Red). If the keypad remains fixed for each log-in by the
user, the intruder could simply press the same key sequence that s/he had observed and
gain access to the user’s account. The crucial innovation which the PINDragon system
incorporates is that the K elements of each property are permuted (called a ‘shuffle’) each
time the user logs in. So, for example, the keypad configuration shown in Figure 1 is what
would be displayed if the properties (shown in unshuffled baseline form in Table 1) were
permuted so as to get what is shown in Table 2. Table 3 displays the permutations which
would yield the configuration shown in Figure 2. Note that the property ‘Position’ is never
shuffled (the keys are located in fixed places on the keypad), but the other six property
sets each have their K = 10 elements permuted, with the first element in each permutation
displayed on the key in position [1], the second on the key in position [2], ..., the tenth on
the key in position [0]. Simple combinatorics shows that there would be (K!)"~! possible
shuffled keypad configurations, or 2.28 x 10*? for the case (K = 10, P = 7).

Although many different keypad configurations can be generated, for the PINDragon
system to be effective, it must be easy for a user (who knows his/her pre-set passcode) to
determine which sequence of keys to push, but difficult for an intruder/observer to deduce
the mechanism by which the user is selecting the key sequence. So as not to burden the
user, as with traditional passcodes, a PINDragon user will need only to memorize, as his/her
passcode, a sequence of L items. However, unlike traditional passcodes, these items won’t
necessarily be elements from the set of integers 0 — 9. Since traditional passcodes are of
length L = 4, we will demonstrate with passcodes of that length, although any length, in
theory, could be used. As was the case with number of keys (K) and number of properties
(P), it is easy to show that security will increase as passcode length (L) increases. However,
it will be much easier, operationally, to increase L than it is to increase K or P, so in our
numerical calculations of Section 3, we offer specific numerical results for L = 4,5,6, and 7.
Of course, passcodes of length L > 7 could be used, but, at some point, users will find the
codes too long to easily remember, and will balk at using them. For a passcode of length
L, under the PINDragon system, the user must specify a property and an element of that
property for each of the L keys in the passcode sequence. For example, the passcode which
the user in Figures 1 and 2 pre-specified when s/he set up the account is as shown in Table
4 below.

Table 4: Passcode Used in Figures 1 and 2

Sequence | Property Element
1 Upper Left |
2 Lower Left J
3 Central Numeral 3
4 Central Numeral 7

Figure 1: Keypad Layout for Self-selected Passcode before Shuffling

Figure 2: Keypad Layout for Self-selected Passcode after Shuffling

In setting up the passcode, for each press, the user may specify any of the 7 property
types, and any element of the specified property type. We suspect that the most popular
properties selected by users will be Position, Color, and Central Numeral, since all of these
are easy to discern from a quick glance at the keypad. If one selects “square in upper left”, as
the user in Table 4 did for his/her first press, s/he would need to scan the upper left corners
of each of the 10 keys until the square was observed in one of them. While this doesn’t take
particularly long to do, one can imagine that users accustomed to fast entry might prefer
to memorize something like (Yellow, 8, Green, Middle Position [5]) as their 4-key sequence.
Users who utilize a variety of different properties in their passcodes will be more securely
protected than those who don’t, but many users may not appreciate the extra hassle and
may revert to passcodes that are easier for them (the users) to remember but which are also
easier for intruders to crack.

Figures 1 and 2 demonstrate which keys (and in which order) a user who had the L = 4
passcode shown in Table 4 should press in order to gain access to the keypads as shuffied
in Figure 1 and Figure 2. If an intruder were watching this log-on process from a distance
and could observe only the positions of the keys pushed ({[1],[2],[7],[9]} for the first shuffle,
and {[7],[5],[7],[2]} for the second), the intruder would have no idea what sequence should be
pressed the next time the shuffled keypad was presented. If the intruder possessed a high-
resolution camera (or had spyware installed on the computer), so that s/he could observe
all 7 properties on each of the pressed keys, s/he might eventually decode the passcode, but
it would take a while. Our goal in the next section is to demonstrate how a determined
intruder might do this, and to estimate how quickly and accurately such a decoding attempt
might be.

1.3 Goals of Report

The most important feature introduced by PINDragon to improve security is shuffling of
property elements on the display keypad each time a user logs on. In the calculations which
are given in Section 3 of this report, we will assume that there is random permutation of
all properties (except Position) each time a new shuffle (log-in) is performed. In fact, the
shuffling algorithm, as currently implemented in PINDragon, doesn’t always permute all
properties. (In Tables 1-3 above, for example, a very careful observer will note that the
Lower Left sequence wasn’t permuted from Table 1 to Table 2.) It has been suggested by
the PinDragon designers that it might be optimal to permute about half (3, in this case) of
the properties between shuffies, but to leave the others as they were on the previous shuffie,
thus temporarily linking some properties. The usefulness of doing this is discussed at the
end of Section 4, but for the remainder of this report, we will assume that independent
permutation of the elements of all the (non-Position) properties is performed at each new
shuffle.

A major purpose of the report is to calculate the probability that a passcode with specific
length (L) can be cracked by a malicious intruder. The answer does not depend on L alone;
it also depends on the number of keys (K) on the keypad, the number of properties (P)
associated with each key, and the number of shuffles (S) which the intruder has viewed.
This is explained in great detail in Sections 2 and 3 of this report. Section 2 defines the
variable names and outlines the process by which an intruder would attempt to infer the

passcode. Section 3 contains theoretical formulae for calculating the probability of detection
as a function of (K, P, L, and S), along with some specific numerical calculations of interest.
Section 4 presents our conclusions.

2 Definitions and Decoding Process

In the PINDragon problem, we define the following variables:

e P = Number of available Properties (including Position)
e K = Number of Keys on keypad
e [, = Length of passcode

e S = Number of views of successful entries on shuffled keyboards

We assume that each of the K keys utilizes all P possible properties and that each of
the properties has K unique levels, with exactly one level of each property used on each of
the K keys each time a shuffle is performed. For the calculations below, we assume that
the K levels of each (non-Position) property are randomly (and independently) permuted
on each shuffle, with the first element in each Property class permutation assigned to key
position [1], the second to key position [2], ..., to key position [K]. We further assume that
a passcode of length L for the user has previously been stored in the PINDragon system,
where the information for each key in the passcode sequence is of the form (Sequence Number,
Property Used, Element Used), such as shown in Table 5 below:

Table 5: Sample Passcode of Length L=4

Sequence | Property Element
1 Upper Left |
2 Color Orange
3 Center Numeral 3
4 Lower Left J

We assume that intruder doesn’t know the user’s passcode, but believes that at some
future date s/he can gain access to a first-level identification verification for the user. (In
current practice, this would be equivalent to stealing a user’s bankcard or being able to
log-in as the user. Under current technology, the only remaining safeguard at that point
is something like a 4-digit PIN code. If the intruder knows or can guess the users’s PIN
code and has the user’s card, s/he has unfettered access to the user’s accounts.) Under the
conventional system, an intruder who observed a user log in once previously would be able
to successfully log in to that user’s account after that one viewing (assuming s/he observed
the initial log-in clearly). Under the PINDragon system, an intruder won’t be able to deduce
the code after one viewing, but as more information accumulates, s/he will be able to do so.
The process for doing so is illustrated with a specific example below — general probability
formulae are provided in the following section.

2.1 Intrusion Example

Let us suppose that we have the case where there are K = 10 keys, P = 7 properties, and
that the PINDragon user has specified the L = 4 passcode shown in Table 5 above. Let
us further suppose that intruder observes S = 3 shuffles (log-ons) for this user, where the
first log-in results in the keypad configuration shown in Figure 1, the second log-in results
in the keypad configuration of Figure 2, and the third in an un-shown configuration. (Note
that the arrows drawn on Figures 1 and 2 are not relevant here, as they refer to a user
with Passcode as given in Table 4, while we are assuming that this user is using the slightly
different passcode shown in Table 5). Assuming the user types his passcode in correctly, if
the intruder were very careful and had a camera to record the sequence of keys pressed at
each of the S = 3 log-ins, s/he would be ale to make a summary table like Table 6 below.

Table 6: Algorithm to decode the passcode

Press Shuffle | Position | Color | Center # | UpLeft | UpRight | LowLeft | LowRight
S=1 | [1] Blue 2 n B I T
First s=2 | [7] White 3 u D P z
S=3 [0] White 8 [E L &

Shuffle | Position | Color | Center # | UpLeft | UpRight | LowLeft | LowRight
S=1 | [6] Orange 5) D N U
Second | S=2 | [9] Orange 5 Q G $ R
S=3 | [9] Orange 4 ¢ F Q X

Press Shuffle | Position | Color | Center # | UpLeft | UpRight | LowLeft | LowRight
S=1 | [7] Yellow 3 A A 0] R
Third | S=2 | [7] White 3 u D P Z
S=3 [8] Red 3 [! K W

Press Shuffle | Position | Color | Center # | UpLeft | UpRight | LowLeft | LowRight
S=1 | [2] Green 1) G J S
Fourth | S=2 | [§] Purple 1 [) H J U
S=3 | [3] Grey 0 o) D J Y

Table 6 illustrates the simple algorithm which the intruder could use to decode the pass-
code. FEach key of the PINDragon keypad contains one element of each of the P = 7
properties (Position, Color, Center Numeral, Upper Left Character, Upper Right Character,
Lower Left Character, and Lower Right Character). An intruder with a camera could clearly
record which key was being pressed on each of the L = 4 presses of a K = 10 keypad. For
the j-th press for each shuffie, the intruder could make a list, like that shown in Table 6,
showing what element for each property is on the pressed keys. The intruder doesn’t know
which property on a certain press is the correct property, but s/he can very quickly deduce
which is not correct. For the first pressed button, even by S = 2, the intruder would know
that the property is Upper Left (i.e. Shape) and that the shape element is B, since that is
the only property among the 7 whose element is repeated in shuffles 1 and 2. For presses
j=2, j=3, and j=4, the intruder doesn’t know for sure what the property is after S = 2
shuffles, but s/he has narrowed it down to two properties for each, and by the time s/he
has observed S = 3, s/he knows that the answers are j=2; Property=Color(Orange), j=3;
Property=Center Numeral(3), j=4; Property=LowLeft(J). So, after S = 3 shuffle viewings,
in this case, the intruder would know the code and could gain access. This is not a specially

chosen example — we will calculate in the next section that if K = 10, P = 7, and L = 4,
there is a 78.6% chance that the intruder would know the passcode within S = 3 shuffled
viewings, with the probability rising to 97.6% for S = 4 viewings.

3 Formulae Under Complete Independent Random Shuffling

We desire to calculate the probability that an intruder will be able to fraudulently log in as a
user whom s/he has previously observed. (We are assuming that the intruder has somehow
gained the card to insert in the system so that the PINDragon system knows who the user
should be, and is simply verifying whether the intruder is entering the correct passcode. We
assume that the intruder has previously viewed S successful logins on shuffled keypads for
this specific user.) Below, we give formulae for calculating two probabilities, P(Know) and
P(Guess), as a function of (P,K,L,S). The first, P(Know) is the probability that the
intruder will know the passcode after S viewings (or equivalently, the probability that the
intruder will successfully gain entry if s/he tries to gain access only when s/he knows the
complete code). The second, P(Guess), is the probability that the intruder will gain access
if s/he enters the key-codes s/he knows and randomly guesses among the eligible options
for the key-codes s/he doesn’t know. Of course, for fixed values of (P,K,L,S), P(Know) is a
subset of P(Guess).

3.1 Calculation of P(Know)

If the PINDragon intruder has viewed S = 0 or S = 1 successful logins for one user on
shuffled keypads, it is impossible that s/he would know the passcode. However, after an
PINDragon intruder has viewed S(S > 1) successful logins on shuffled keypads, there is
non-zero probability that the code will be cracked. This will occur when no property except
the true key property has a repeated element over the S shuffles observed. The probability
that any element of a property will repeat on the same key for all S viewings is (%)S’1
since every property has exactly K unique levels. In order to know the exact level of the
property of the passcode, there should be no repeat levels of all the other (P — 1) properties.

Therefore, equation (1) is used to calculated P(Know) of the L length of passcode.

Y

(P-1)L
!] (5> 1) 0

3.2 Calculation of P(Guess)

It is reasonable that for a fixed number (S) of shuffles, P(Guess) is a little larger than
P(Know). If an intruder has never viewed a Shuffling (S=0), the probability of guessing is
the same as in the traditional case ((+)"), since the intruder has probability of + to guess one
key of the passcode correctly. If an intruder has had S = 1 viewing, there is zero probability
that s/he knows the passcode, but his/her odds of guessing improve slightly from S = 0
case, since s/he can eliminate a few properties. This increased probability of guessing when

S =1 is shown in equation (3). In general, the formula for the probability of guessing for

S > 2 is given by equation (4) below. This is a somewhat complex formula which conditions
on the number of elements repeated after S Shufflings, assuming that the intruder correctly
entered the keys which s/he knows, and randomly guesses among the eligible elements for
the other keys.

P(Guess) = K%)} ’ (S =0) 2)

P(Guess) = K%) (1 + %)r (S =1) (3)

v~ B () () ()

]=

Tables 7 and 8 below list P(Know) and P(Guess) for various values of increasing S with
P=17 K =10, and L = 4,5,6, and 7, assuming complete random independent shuffling.
The actual PINDragon system, since it uses correlated shuffling, will yield slightly lower
probabilities of intrusion, as explained in Section 4.

Table 7: Probability of Successful Intrusion (P=7, K=10, L=4 and 5)
P(Known) P(Guess) | P(Known) P(Guess)

S=0 0.0000 0.0001 0.0000 0.0000
S=1 0.0000 0.0027 0.0000 0.0006
S=2 0.0798 0.3085 0.0424 0.2299
S=3 0.7857 0.8871 0.7397 0.8609
S=4 0.9763 0.9881 0.9704 0.9851
S=5

0.9976 0.9988 0.9970 0.9985

Table 8: Probability of Successful Intrusion (P=7, K=10, L=6 and 7)

L=6 L=7
P(Known) P(Guess) | P(Known) P(Guess)
S=0 0.0000 0.0000 0.0000 0.0000
S=1 0.0000 0.0001 0.0000 0.0000
S=2 0.0225 0.1714 0.0120 0.1277
S=3 0.6964 0.8355 0.6557 0.8109
S=4 0.9646 0.9822 0.9588 0.9792
S=5 0.9964 0.9982 0.9958 0.9979

4 Conclusion

PINDragon is a novel passcode generator which offers clients more choices when designing
their passcodes. It introduces a new algorithm - the shuffle - to further increase the difficulty

in decoding. In the present report, we assume that an intruder has viewed a user’s successful
logins on shuffled keypads and want to fraudulently log in as the client. We computed the
probability that the intruder would know the correct passcode after certain viewings, and the
probability that the intruder will gain access by optimized guessing. Based on the probability
results from a length of passcode from 4 to 7, we conclude that up to five views are enough
to decode all passcodes (P(Know) > 0.99 and P(Guess) > 0.99). Longer passcodes are
not considered in the report since we doubt that clients would use them. However, there is
no doubt that increasing the length (L) of the passcode is the single easiest modification to
decrease the probability that the intruder, after a fixed number of views (.S), could decipher
the passcode.

The actual PINDragon system, which uses correlated shuffling, will yield slightly lower
probabilities of intrusion for fixed values of (P, K, L, S). This will occur because correlated
shuffling will tend to increase simultaneous runs of repeated elements from different proper-
ties on the same key, this making it more difficult to make a unique identification until more
views have been observed. This is counter-balanced by the fact that non-shuffling makes it
easier for an intruder to gain entry simply by “doing what was done before”. The PINDragon
formulators are correct that the optimal correlation to induce (in order to hinder intruder
detection capabilities) would occur if about half of all properties are randomly selected to
be permuted while the other half are not permuted. Unfortunately, a closed form answer for
P(Know) and P(Guess) under this scenario isn’t possible. Such an answer could be obtained
by simulation, if desired. Preliminary results indicate that this technique isn’t really that
effective at preventing a correct guess — perhaps requiring one additional shuffle viewing than
would be required under independent sampling. Certainly, this ‘half shuffle’ technique would
be much less effective at preventing detection than simply increasing the passcode length
(L) by 1.

Overall, a determined intruder will eventually defeat PINDragon. However, such very
determined anatagonists are probably not the main enemy against which PINDragon is
competing. For the cases S = 1 and S = 2, which are probably most common in real life,
the system seems fairly secure, with the even the riskiest (L = 4) passcode length not being
guessable more than 31% of the time. Similarly, even if a potential intruder gains many
viewings (.5), if s/he can’t get a good look at all the properties on the selected keys, s/he
will not be able to guess using the detection algorithm introduced in Section 2.1. In that
sense, the detection probabilities shown in Tables 7 and 8 are worst-case scenarios — the “in
practice” detection probabilities for the PINDragon system are likely much lower than those
shown.

5 Acknowledgment

We gratefully acknowledge extremely valuable scientific discussion with Professor Jaxk Reeves,
Director of the UGA Statistical Consulting Center and Professor Nicole Lazar, UGA Statis-
tics Department Head.

10

Appendix R code

HHHHHFHHH B R R ##Cal culat ion
HHHHHFHHH AR HRE B R H E R L=4

###P know
L=4
###S=2

(dbinom(0, size=6, prob=0.1))°L

###5=3

(dbinom(0, size=6, prob=0.01))-°L

###5=4

(dbinom(0, size=6, prob=0.001))°L

###S=5

(dbinom(0, size=6, prob=0.0001))°L

###P guess

L=4

H#H#H#S=2
s=rep(0,7)

for (k in 1:7){
s[k]=dbinom(k-1,

}
(sum(s))"L
##4#S=3
s=rep(0,7)

for (k in 1:7){
s[k]=dbinom(k-1,

}
(sum(s))"L
###S=4
s=rep(0,7)

for (k in 1:7){
s[k]=dbinom(k-1,

}
(sum(s))"L
###S=5
s=rep(0,7)

for (k in 1:7){
s[k]=dbinom(k-1,
}

(sum(s)) L

size=6, prob=0.1)/(k)

size=6, prob=0.01)/(k)

size=6, prob=0.001)/(k)

size=6, prob=0.0001)/ (k)

11

HHHHHHHH RS HH SRR SRR R H#]L=5
###P know

L=5

###S=2

(dbinom(0, size=6, prob=0.1))°L
###S=3

(dbinom(0, size=6, prob=0.01))°L
##4#S=4

(dbinom(0, size=6, prob=0.001))°L
###S=5

(dbinom(0, size=6, prob=0.0001))°L

###P guess

L=5b

###S=2

s=rep(0,7)

for (k in 1:7){

s [k]=dbinom(k-1, size=6, prob=0.1)/(k)
}

(sum(s))"L
###S=3
s=rep(0,7)

for (k in 1:7){
s [k]=dbinom(k-1, size=6, prob=0.01)/(k)
+

(sum(s))L
###S=4
s=rep(0,7)

for (k in 1:7){
s [k]=dbinom(k-1, size=6, prob=0.001)/(k)
}

(sum(s)) "L
###S=5
s=rep(0,7)

for (k in 1:7){

s [k]=dbinom(k-1, size=6, prob=0.0001)/(k)
}

(sum(s))"L

HEGHHHHH SRS HE SR RS HH H H S HH] =0
###P know

L=6

###S=2

(dbinom(0, size=6, prob=0.1))°L

###S=3

(dbinom(0, size=6, prob=0.01))°L

12

###S=4

(dbinom(0, size=6, prob=0.001))°L
###S=5

(dbinom(0, size=6, prob=0.0001))°L
###P guess

L=6

###S=2

s=rep(0,7)

for (k in 1:7){

s [k]=dbinom(k-1, size=6, prob=0.1)/(k)

}
(sum(s))"L
###S=3
s=rep(0,7)

for (k in 1:7){
s [k]=dbinom(k-1, size=6, prob=0.01)/(k)

}
(sum(s))"L
H###S=4
s=rep(0,7)

for (k in 1:7){
s [k]=dbinom(k-1, size=6, prob=0.001)/(k)
}

(sum(s)) "L
###S=5
s=rep(0,7)

for (k in 1:7){

s [k]=dbinom(k-1, size=6, prob=0.0001)/(k)
}

(sum(s))"L

HEGHHH R R RS S R H]L =T
###P know

L=7

###S=2

(dbinom(0, size=6, prob=0.1))°L
###S=3

(dbinom(0, size=6, prob=0.01))°L
###S=4

(dbinom(0, size=6, prob=0.001))°L
###S=5

(dbinom(0, size=6, prob=0.0001))°L

13

###P guess

L=7

#H#H#S=2
s=rep(0,7)

for (k in 1:7){
s[k]=dbinom(k-1,
+

(sum(s)) L
##4#S=3
s=rep(0,7)

for (k in 1:7){
s [k]=dbinom(k-1,
}

(sum(s))"L
###S=4
s=rep(0,7)

for (k in 1:7){
s[k]=dbinom(k-1,
}

(sum(s))"L
###S=5
s=rep(0,7)

for (k in 1:7){
s [k]=dbinom(k-1,
+

(sum(s))"L

size=6,

size=6,

size=6,

size=6,

prob=0.1)/(k)

prob=0.01)/(k)

prob=0.001)/ (k)

prob=0.0001) / (k)

14

